Question

An ice-making machine operates on the ideal vapor-compression cycle, using R-134a. The refrigerant enters the compressor as saturated vapor at 140 kPa and leaves the condenser as saturated liquid at 600 kPa. Water enters the ice machine at 13oC and leaves as ice at -4oC, while removing heat at 393 kJ per kg of water. Estimate the mass flow rate of the refrigerant and the power input to the ice machine for an ice production rate of 7 kg/h.

Answer #1

An ice-making machine operates on the ideal vapor-compression
cycle, using refrigerant-134a. The refrigerant enters the
compressor as saturated vapor at 20 psia and leaves the condenser
as saturated liquid at 80 psia. Water enters the ice machine at
55°F and leaves as ice at 25°F. For an ice production rate of 15
lbm/h, determine the power input to the ice machine (169 Btu of
heat needs to be removed. Compressor's efficiency is 90 percent

An ideal vapor-compression refrigeration cycle operates at
steady state with Refrigerant 134a as the working fluid. Saturated
vapor enters the compressor at 1 bar, and saturated liquid exits
the condenser at 4 bar. The mass flow rate of refrigerant is 8.5
kg/min.
Determine the compressor power, in kW.

Consider a 280 kJ/min refrigeration system that operates on an
ideal vapor-compression refrigeration cycle with refrigerant-134a
as the working fluid. The refrigerant enters the compressor as
saturated vapor at 140 kPa and is compressed to 800 kPa. The
saturated refrigerant-134a—pressure table (in SI units) is given
below. Determine the quality of the refrigerant at the end of the
throttling process.

Refrigerant 134a is the working fluid in an ideal
vapor-compression refrigeration cycle operating at steady state.
Refrigerant enters the compressor at 1 bar, -12°C, and the
condenser pressure is 9 bar. Liquid exits the condenser at 32°C.
The mass flow rate of refrigerant is 7 kg/min. Determine:
(a) the magnitude of the compressor power, in kW. (b) the
refrigeration capacity, in tons. (c) the coefficient of
performance.

A vapor-compression refrigeration cycle operates at steady state
with Refrigerant 134a as the working fluid. Saturated vapor enters
the compressor at 2 bar, and saturated liquid exits the condenser
at 8 bar. The isentropic compressor efficiency is 80%. The mass
flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor
power, in kW, (b) the refrigeration capacity, in tons, (1 ton =
3.5168 kW) and, (c) the coefficient of performance, (d) rate of
entropy production in kW/K, for the...

Refrigerant 134a is the working fluid in a vapor-compression
heat pump that provides 35 kW to heat a dwelling on a day when the
outside temperature is below freezing. Saturated vapor enters the
compressor at 2.6 bar, and saturated liquid exits the condenser,
which operates at 8 bar. Determine for an isentropic compressor
efficiency of 85%: (a) the refrigerant mass flow rate, in kg/s. (b)
the magnitude of the compressor power, in kW. (c) the coefficient
of performance.

a heat pump operates on the ideal vapor compression
refrigerant cycle and uses redrigerant-134a as thebworking fluid.
the condensor operates at 1200kpa and the evaportor at 280kpa.
calculate 1) the cop of the heat pump 2) the rate of heat supplied
to the evaporator when compressor consumes 20kw

An idea vapor-compression refrigeration cycle, with refrigerant
R-22 as the working fluid, has an evaporator temperature of -12 °C
and a condenser pressure of 15 bar. Saturated vapor enters the
compressor, and saturated liquid exits the condenser. The
refrigerating capacity is 4 tons.
a.Determine the compressor power (in kW).
b.Determine the mass flow rate of the refrigerant (in
kg/min).
c.Determine the coefficient of performance.

Consider a commercial refrigerator which operates on the
refrigeration cycle. R-
134a is used as the working
uid and the refrigerated space is kept at -25oC by rejecting
its
waste heat to cooling water that enters the condenser at room
temperature, that is 20oC, at a
rate of 0.1 kg/s and leaves at 40oC. The refrigerant enters the
condenser at 1.2 MPa and 70oC
and leaves at 40oC. The inlet state of the compressor is saturated
vapor at 100 kPa...

Regarding a Vapor-Compression cycle: A refrigerant (HCFC-22)
enters the compressor of a refrigerator as a superheated vapor at
.14MPa and -20 degrees Celsius at a rate of .05 kg/s and leaves at
.8 MPa and 50 degrees Celsius. The refrigerant is cooled in the
condenser to 26 degrees Celsius and .72MPa and is then throttled
down to .15 MPa. Determine the rate of heat removal from the
refrigerated space and the power input to the compressor and the
Coefficient of...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 28 minutes ago

asked 36 minutes ago

asked 48 minutes ago

asked 54 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago