Question

Superheated steam at 5MPa and 4000C flows at a rate of 3kg/s through a well insulated...

Superheated steam at 5MPa and 4000C flows at a rate of 3kg/s through a well insulated horizontal nozzle operating at steady state. The inlet steam enters the nozzle at velocity of 20m/s and exits at 500m/s at 100kPa.

Determine:

A) Whether steam entering the nozzle is considered an ideal gas? Find the specific enthalpy and specific volume at entrance of nozzle?

B) Find the exit temperature in K? What is the phase of the steam exiting the nozzle? Determine the exiting temperature, specific volume, and specific enthalpy?  

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Refrigerant 134a enters a well-insulated nozzle at 14 bar, 60°C, with a velocity of 37 m/s...
Refrigerant 134a enters a well-insulated nozzle at 14 bar, 60°C, with a velocity of 37 m/s and exits at 1.2 bar with a velocity of 460 m/s. For steady-state operation, and neglecting potential energy effects, determine the exit temperature, in °C.
Steam enters a nozzle operating at a pressure of 30 [bar] and a temperature of 320...
Steam enters a nozzle operating at a pressure of 30 [bar] and a temperature of 320 [◦C] with negligible velocity. The steam exits the nozzle at a pressure of 15 [bar] and a velocity of 10 [m/s]. The mass flow rate is 2.5 [kg/s]. Assume the nozzle is well insulated. Determine the exit temperature of the steam.
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at...
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at 0.1 bar. The isentropic efficiency of the turbine is 94.7%. Assuming the kinetic and potential energy effects to be negligible, determine: (a) Work output, in kJ/kg, (b) The temperature at the exit of the turbine, in °C, and (c) The rate of entropy production within the turbine, in kJ/K per kg of steam flowing through the turbine. (All steps required – Given/Find/Schematic/Engineering Model/Analysis) THANK...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at the nozzle exit. (ii) If the inlet area is 0.1 m2 and specific volume...
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a...
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a and another pipe containing an ideal gas with constant specific heat at constant pressure of 1.2 kJ/(kg∙K). The refrigerant 134a enters the heat exchanger in a saturated liquid state and exits the heat exchanger in a saturated vapor state. The temperature and mass flow rate of the refrigerant 134a are -20° C and 3 kgs/s, respectively, at both its inlet and outlet. The ideal...
A horizontal portion of a well-insulated ducting for a ventilation system operating at steady state has...
A horizontal portion of a well-insulated ducting for a ventilation system operating at steady state has one inlet at 35 degrees C with a mass flowrate of 45 kg/min and a second inlet at 21 degrees C with a volumetric flowrate of 30.25 m^3/min. A single stream exits at 29 degrees C through a 1.1 m diameter pipe. The pressure for the entire system is 1 atm throughout. Assume air as an ideal. a.) Draw a detailed schematic of the...
13)  A turbine, operating under steady-flow conditions, receives 5000 kg of steam per hour. The steam enters...
13)  A turbine, operating under steady-flow conditions, receives 5000 kg of steam per hour. The steam enters the turbine at a velocity of 3000 m/min, an elevation of 5 m and a specific enthalpy of 2787 kJ/kg. It leaves the turbine at a velocity of 6000 m/min, an elevation of 1 m and a specific enthalpy of 2259 kJ/kg. Heat losses from the turbine to the surroundings amount to 16736 kJ/h. Determine the power output of the turbine. 14) 12 kg...
A steam of 100mol/s ethanol(C2H5OH) vapor at 400oC and 1 atm is fed to an adiabatic...
A steam of 100mol/s ethanol(C2H5OH) vapor at 400oC and 1 atm is fed to an adiabatic reator. The ethanol is reacted to produce acetaldehyde (CH3CHO) vapor and hydrogen (H2) gas.After a conversion of 30% the products exit from the reactor at 1atm.It is given that the heat capacity of acetaldehyde,in kJ/(mol.oC) is given as below: Cp,CH3CHO=50.48X10-3+13.26x10-5T-8.049x10-8T2+23.8X10-12T3 i)Express the molar flowrate and specific enthalpy for all substances in the inlet-outlet enthalpy table. ii)Show the stoichiometric equation for the reaction in the...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity of 10 m/s and exits at 4.5 bar with a quality of 95%. Heat transfer from the pipe to the surroundings at 291K takes place at an average outer surface temperature of 400 K. For operation at steady state, determine (a) the velocity at the exit, in m/s. (b) the rate of heat transfer from the pipe, in kW.? (c) the rate of entropy...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity...
Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity of 10 m/s and exits at 4.5 bar with a quality of 95%. Heat transfer from the pipe to the surroundings at 291K takes place at an average outer surface temperature of 400 K. For operation at steady state, determine (a) the velocity at the exit, in m/s. (b) the rate of heat transfer from the pipe, in kW.? (c) the rate of entropy...