Question

Entropy From Steam Tables

A piston-cylinder assembly contain 2 kg of water. The water is initially at the pressure of 0.5 MPa and the temperature of 300°C. The water is cooled down at constant pressure process until it is a saturated vapor. Determine the change in the entropy of the system.

Answer #1

2 kg of steam initially at 2.00 MPa and 225?C expands in a
piston-cylinder assembly until the final pressure is 0.10 MPa.
During the process, the temperature of steam is kept constant by
keeping it in a constant temperature atmosphere at 225?C. a. What
is the maximum amount of work that can be produced? What is the
entropy change of steam? What is the entropy change of the
universe? b. Suppose that the actual work done is 80% of the...

A piston-cylinder device contains 0.54 kg of steam at 300
degrees C and 3 MPa. Steam is cooled at constant pressure until
one-half of the mass condenses. (A) Find the final temperature (B)
Determine the volume change

A mass of one kg of water within a piston–cylinder assembly
undergoes a constant-pressure process from saturated vapor at 500
kPa to a temperature of 260°C. Kinetic and potential energy effects
are negligible. For the water:
a) Evaluate the work, in kJ,
b) If the work is 30 kJ, evaluate the heat transfer, in kJ,
c) If the heat transfer is negligible, evaluate the entropy
production in kJ/K
d) Determine if the process is reversible, irreversible, or
impossible.

1 kg of water in a piston cylinder arrangement is initially in a
saturated liquid state at 1 bar. It undergoes expansion at constant
pressure due to external heat supply to it, to a final state of
saturated vapor.
(i) What is the initial temperature of water in C? (a) 93.50 (b)
96.71 (c) 99.63 (d) 111.4 (e) 12.2
(ii) What is the change in enthalpy of water (kJ/kg-K)? (a)
417.46 (b) 2258.0 (c) 2675.5 (d) 2506.1
(iii) What is...

A piston-cylinder device initially contains 75 g of saturated
water vapor at 340 kPa . A resistance heater is operated within the
cylinder with a current of 0.6 A from a 300 V source until the
volume doubles. At the same time a heat loss of 7 kJ occurs.
Part A)Determine the final temperature (T2).
Part B)Determine the duration of the process.
Part C)
What-if scenario: What is the final
temperature if the piston-cylinder device initially contains
saturated liquid water?

A piston-cylinder device with a set of stops initially contains
0.35 kg of steam at 1.0 MPa and 900 degrees C. The location of the
stops corresponds to 44 percent of the initial volume. Now the
steam is cooled. Determine the magnitude of the compression work if
the final state is (A) 1.0 MPa and 600 degrees C and W=. kJ (B) 500
kPa. W=. kJ (C) Also determine the temperature at the final state
in part (B). T2=. C

Steam, initially at 700 lbf/in.2, 550°F undergoes a
polytropic process in a piston–cylinder assembly to a final
pressure of 2200 lbf/in.2 Kinetic and potential energy
effects are negligible.
Determine the heat transfer, in Btu per lb of steam, for a
polytropic exponent of 1.4,
(a) using data from the steam tables.
(b) assuming ideal gas behavior.

H3.3 A frictionless piston-cylinder device contains 2 kg of H2O
initially at T1 = 300◦C and p1 = 5 bar. The device is cooled at
constant pressure until the volume is ∀2 = 0.5 m3 . Assume a
quasiequillibrium process which occurs slowly with no acceleration
as the piston moves. Kinetic and potential energy effects are
negligible. Determine: a. work [kJ] during process (indicate
magnitude and direction) b. heat transfer [kJ] during process
(indicate magnitude and direction)

water contained in a piston cylinder assembly,
initially at 1.5bar and a quality of 20%, is heated at constant
pressure

Ammonia contained in a piston–cylinder assembly, initially
saturated vapor at T1 = 4°F, undergoes an isothermal process to a
final specific volume v2 = 5.2 ft3/lb. Determine the final
pressure, in lbf/in2, and the final quality, x2.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 4 minutes ago

asked 6 minutes ago

asked 6 minutes ago

asked 6 minutes ago

asked 6 minutes ago

asked 8 minutes ago

asked 10 minutes ago

asked 10 minutes ago

asked 10 minutes ago

asked 13 minutes ago

asked 13 minutes ago