Question

A piston-cylinder device with a set of stops initially contains 0.35 kg of steam at 1.0 MPa and 900 degrees C. The location of the stops corresponds to 44 percent of the initial volume. Now the steam is cooled. Determine the magnitude of the compression work if the final state is (A) 1.0 MPa and 600 degrees C and W=. kJ (B) 500 kPa. W=. kJ (C) Also determine the temperature at the final state in part (B). T2=. C

Answer #1

A piston-cylinder device contains 0.54 kg of steam at 300
degrees C and 3 MPa. Steam is cooled at constant pressure until
one-half of the mass condenses. (A) Find the final temperature (B)
Determine the volume change

A piston-cylinder device initially contains 75 g of saturated
water vapor at 340 kPa . A resistance heater is operated within the
cylinder with a current of 0.6 A from a 300 V source until the
volume doubles. At the same time a heat loss of 7 kJ occurs.
Part A)Determine the final temperature (T2).
Part B)Determine the duration of the process.
Part C)
What-if scenario: What is the final
temperature if the piston-cylinder device initially contains
saturated liquid water?

A piston cylinder device contains 0.15 kg of air initially at 2
MPa and 350 C. First, the air expands isothermally to a pressure of
500 kPa. Then, it is compressed polytropically back to the initial
pressure (2 MPa) with a polytropic exponent of 1.2. Find the work
performed or introduced by or to the air for each process. Express
it both times in kJ.

H3.3 A frictionless piston-cylinder device contains 2 kg of H2O
initially at T1 = 300◦C and p1 = 5 bar. The device is cooled at
constant pressure until the volume is ∀2 = 0.5 m3 . Assume a
quasiequillibrium process which occurs slowly with no acceleration
as the piston moves. Kinetic and potential energy effects are
negligible. Determine: a. work [kJ] during process (indicate
magnitude and direction) b. heat transfer [kJ] during process
(indicate magnitude and direction)

Entropy From Steam Tables
A piston-cylinder assembly contain 2 kg of water. The water is
initially at the pressure of 0.5 MPa and the temperature of 300°C.
The water is cooled down at constant pressure process until it is a
saturated vapor. Determine the change in the entropy of the
system.

1-kg water in a frictionless piston-cylinder device is initially
at 250°C and 300 kPa (state
1). A total of 700 kJ of work is done ON the water
in order to isothermally reduce its volume to
1/20 of its initial volume (state 2). Determine the magnitude and
direction of the heat transfer
involved in this process.
Answer: -1147 kJ.

Steam undergoes an isentropic compression in an insulated
piston–cylinder assembly from an initial state where T1 = 120°C, p1
= 1 bar to a final state where the pressure p2 = 20 bar. Determine
the final temperature, in °C, and the work, in kJ per kg of steam.
The final temperature equals 513.87°C.

2 kg of steam initially at 2.00 MPa and 225?C expands in a
piston-cylinder assembly until the final pressure is 0.10 MPa.
During the process, the temperature of steam is kept constant by
keeping it in a constant temperature atmosphere at 225?C. a. What
is the maximum amount of work that can be produced? What is the
entropy change of steam? What is the entropy change of the
universe? b. Suppose that the actual work done is 80% of the...

A piston cylinder device contains a mixture of 0.2 kg of H2 and
1.6 kg of N2 at 100 kPa and 300K. Heat is now transferred to the
mixture at constant pressure unitl the volume is doubled. Assuming
constant specific heats at the average temperature (the constant
pressure specific heats of H2 and N2 are 14.501 kJ/kg°K and 1.049
kJ/kg°K, respectively), determine: a) the heat transfer. b) the
entropy change of the mixture.

steam is contained in a piston and cylinder assemble at a
pressure of 5 bar and temperature of 700 degrees celcius. At this
initial condition, the cylinder is restrained by stops since the
pressure is applied on piston only supprts a pressure of 3 bar in
the cylinder. The initial volume of system is 1m^3 and cooling is
applied to the system until final volume is 0.1m^3. Determine work
and heat transfer.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 59 seconds ago

asked 59 seconds ago

asked 3 minutes ago

asked 4 minutes ago

asked 5 minutes ago

asked 6 minutes ago

asked 8 minutes ago

asked 8 minutes ago

asked 14 minutes ago

asked 14 minutes ago

asked 15 minutes ago

asked 15 minutes ago