Question

An air-standard dual cycle has the following elements: compression ratio = 8.0 1600 kJ/kg heat addition...

An air-standard dual cycle has the following elements:

compression ratio = 8.0
1600 kJ/kg heat addition so that 30% occurs at constant volume and 70% occurs at constant pressure
The state is 300K and 1 bar at the beginning of the compression process
Find:  
(a) the temperatures at the end of each heat addition process
(b) the cycle efficiency
(c) the MEP

Homework Answers

Answer #2

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected 2) An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected. 11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure...
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are...
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are 1 bar and 47°C, respectively. The heat supplied in the cycle is 1250kJ/kg, two third of this heat is being added at constant volume and the remaining heat is added at constant pressure. If the compression ratio is 16, determine 1)the maximum temperature in the cycle. 2)the thermal efficiency of the cycle. 3)the mean effective pressure.
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 6 and the heat addition per unit mass of air is 1500 kJ/kg. Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.
An ideal Diesel cycle has a cut off ratio of 2. The temperature of the air...
An ideal Diesel cycle has a cut off ratio of 2. The temperature of the air at the beginning and at the end of the compression process are 300 K and 900 K respectively. By utilizing constant specific heats, taking the specific heat ratio, k = 1.4, Cp = 1.005 kJ/kg K and Cv = 0.718 kJ/kg K. Determine the followings: (i) The compression ratio. [5 marks] (ii) The maximum cycle temperature. [5 marks] (iii) The amount of heat transferred...
A Diesel cycle has a compression ratio of 12 and cut-off ratio of 2. At the...
A Diesel cycle has a compression ratio of 12 and cut-off ratio of 2. At the beginning of the isentropic-compression process, the pressure and temperature are 100 kPa and 35°C (308 K), respectively. During the constant-pressure process, heat is added to the working fluid from a reservoir at a temperature of 1760°C (2033 K). During the constant volume process, heat is rejected to the environment, which is at 30°C (303 K) and 100kPa. For the air involved, it may be...
In a Dual cycle the heat transfer during the constant volume process is double that during...
In a Dual cycle the heat transfer during the constant volume process is double that during the constant pressure process. The compression ratio is 14 and the air initial conditions are 1 bar and 27oC. If the maximum pressure in the cycle is 60 bar, calculate: Maximum temperature Heat added at constant volume and constant pressure per kg of air Cycle thermal efficiency Net work per kg of air Exergy destroyed associated with the cycle. Assume the source temperature to...
1. An engine operating at a hot-air standard (k=1.35) Dual Combustion Cycle handles air at 100kPa,...
1. An engine operating at a hot-air standard (k=1.35) Dual Combustion Cycle handles air at 100kPa, 34.5°C, & 0.3531m^3 during the beginning of the isentropic compression process. The engine has a percent clearance of 6.25% and an expansion ratio of 1.5 during the isentropic expansion process. It receives 165 kJ of heat during the constant volume process. What is the a.) Temperatures at different points of the cycle °C? b.) Net Work kJ? And c.) Mean effective pressure in kPa?
1a. An air-standard cycle consists of the following processes: isentropic compression from 15 ?C, 1.01 bar...
1a. An air-standard cycle consists of the following processes: isentropic compression from 15 ?C, 1.01 bar through a compression ratio of 5:1; heat addition at constant volume of 2600 kJ/kg; isentropic expansion to the initial volume; heat rejection at constant volume. Sketch the cycle on p-v and T-s diagrams, and calculate its ideal efficiency, mean effective pressure and peak pressure. Answers(0.475, 18.9 bar, 73.0 bar) b. The cycle is problem (a) is modified so that the heat is added (a)...
The compression ratio of an engine is 10 and the temperature and pressure at the start...
The compression ratio of an engine is 10 and the temperature and pressure at the start of compression is 370 Celcius degree and 1 bar. The compression and expansion processes are both isentropic and the heat rejected at exhaust at constant volume. The amount of heat added during the cycle is 3000 kJ/kg. Determine the mean effective pressure and thermal efficiency of the cycle if the maximum pressure is limited to 70 bar and heat added at both constant volume...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT