Question

Moist air at 30 °C and 50% relative humidity enters a dehumidifier operating at steady state...

Moist air at 30 °C and 50% relative humidity enters a dehumidifier operating at steady state with a mass flow rate of 319.35 kg/min. The moist air passes over a cooling coil and water vapor condenses. Condensate (condensed water) exits at 10 °C. Saturated moist air exits in a separate stream at the same temperature. The pressure remains constant at 1 bar. Determine (a) the rate at which water is condensed, in kg/min, and (b) the heat transfer rate during the cooling, in kW

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Air at T1 = 32°C, p1 = 1 bar, 50% relative humidity enters an insulated chamber...
Air at T1 = 32°C, p1 = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T2 = 7°C, p2 = 1 bar. A single mixed stream exits at T3 = 17°C, p3 = 1 bar. Neglect kinetic and potential energy effects A) Determine mass flow rate of the moist air entering at state 2, in kg/min. (Answer...
Air at 95°F, 1 atm, and 10% relative humidity enters an evaporative cooler operating at steady...
Air at 95°F, 1 atm, and 10% relative humidity enters an evaporative cooler operating at steady state. The volumetric flow rate of the incoming air is 1765 ft3/min. Liquid water at 68°F enters the cooler and fully evaporates. Moist air exits the cooler at 70°F, 1 atm. There is no significant heat transfer between the device and its surroundings and kinetic and potential energy effects can be neglected. a)Determine the mass flow rate of the dry air in lb(dry air)/min....
In a condenser, humid air at atmospheric pressure, 35 degree celsius and 90% relative humidity enters...
In a condenser, humid air at atmospheric pressure, 35 degree celsius and 90% relative humidity enters the process at a rate of 2.12 m3/s. Liquid water exits as a condensate. If the air exits at 20 degree celsius, determine the molal humidity of outlet air, absolute humidities of inlet and outlet air and flow rate of condensate in L/s.
Atmosphric air at 40 F and 50% relative humidity enters the heating section of an airconditioning...
Atmosphric air at 40 F and 50% relative humidity enters the heating section of an airconditioning device at a volumetric flow rate of 100ft^3/min. Water vapor is added to the heated air to increase the relative humidity to 55%. The temperature after the heating section is 72F and the temperature at the exit is 74F. Using the appropriate fomulas: a) determine the rate of the heat transfer in Btu/min. b) determine the mass flow of water vapor in lbm/min.
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid....
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 1 bar, and saturated liquid exits the condenser at 4 bar. The mass flow rate of refrigerant is 8.5 kg/min. Determine the compressor power, in kW.
Water at p1 = 20 bar, T1 = 400oC enters a turbine operating at steady state...
Water at p1 = 20 bar, T1 = 400oC enters a turbine operating at steady state and exits at p2 = 1.5 bar, T2 = 230oC. The water mass flow rate is 4000 kg/hour. Stray heat transfer and kinetic and potential energy effects are negligible. Determine the power produced by the turbine, in kW, and the rate of entropy production in the turbine, in kW/K.
Moist air is heated and humidified by passing it first over a heating coil and then...
Moist air is heated and humidified by passing it first over a heating coil and then adding moisture. The moist air enters the system at 6°C DBT and 4°C WBT at a rate of 100 kg/min. The humidifier injects saturated steam at 108°C. The moist air exits the system at 30°C DBT and 40% RH. Determine the rate of heat addition by heating coil and the rate of mass addition by the humidifier.
Moist air enters a dehumidifier at the rate of 0.26 lbm/s. Water drains out of the...
Moist air enters a dehumidifier at the rate of 0.26 lbm/s. Water drains out of the device at a rate of 23 lbm/hr. Determine the velocity, in ft/s, at which the (less moist) air exits the device if the area of the exit port is 1.04 ft2. Assume that the density of the less moist air is 2.5 · 10-3 lbm/ft3.
Consider an air-cooled condenser in which a stream of R-134a enters at 12 bar and 60degC,...
Consider an air-cooled condenser in which a stream of R-134a enters at 12 bar and 60degC, and leaves as a saturated liquid at 12 bar, and air enters as a separate stream at 1 bar, 35degC and leaves at 1 bar, 45degC. The two streams do not mix but heat transfer from one stream to the other stream occurs at the rate of 6.94 kW. Determine (a) the mass flow rates for the R-134a and the air (kg/s), and (b)...
Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits...
Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits at 7°C. Refrigerant 134a enters at 0.2 MPa, a quality of 0.21, and a mass flow rate of 30 kg/h. Refrigerant exits at 0°C. There is no significant change in pressure for either stream. (a) For the Refrigerant 134a stream, determine the rate of heat transfer, in kJ/h (b) For the refrigerant stream evaluate the change in flow exergy rate, in kJ/h. (c) For...