Question

Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits...

Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits at 7°C. Refrigerant 134a enters at 0.2 MPa, a quality of 0.21, and a mass flow rate of 30 kg/h. Refrigerant exits at 0°C. There is no significant change in pressure for either stream. (a) For the Refrigerant 134a stream, determine the rate of heat transfer, in kJ/h (b) For the refrigerant stream evaluate the change in flow exergy rate, in kJ/h. (c) For the air stream evaluate the change in flow exergy rate, in kJ/h. Let T0 = 22°C, p0 = 0.1 MPa, and ignore the effects of motion and gravity. Round your answers to 3 significant digits.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a...
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a and another pipe containing an ideal gas with constant specific heat at constant pressure of 1.2 kJ/(kg∙K). The refrigerant 134a enters the heat exchanger in a saturated liquid state and exits the heat exchanger in a saturated vapor state. The temperature and mass flow rate of the refrigerant 134a are -20° C and 3 kgs/s, respectively, at both its inlet and outlet. The ideal...
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10 kg/s and exits at 350 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10 kg/s and exits at 275 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10 kg/s and exits at 275 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
Water is used to cool R-134a in the condenser of a heat exchanger. The refrigerant enters...
Water is used to cool R-134a in the condenser of a heat exchanger. The refrigerant enters the counter-flow heat exchanger at 800 kPa, 80 0C and a mass flow rate of 2 kg/s. The refrigerant exits as a saturated liquid. Cooling water enters the condenser at 500 kPa and 18 0C and leaves the condenser at 30 0C. Determine the necessary mass flow rate of water. Each fluid is assumed to flow at constant pressure.
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at...
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at 0.1 bar. The isentropic efficiency of the turbine is 94.7%. Assuming the kinetic and potential energy effects to be negligible, determine: (a) Work output, in kJ/kg, (b) The temperature at the exit of the turbine, in °C, and (c) The rate of entropy production within the turbine, in kJ/K per kg of steam flowing through the turbine. (All steps required – Given/Find/Schematic/Engineering Model/Analysis) THANK...
Moist air at 30 °C and 50% relative humidity enters a dehumidifier operating at steady state...
Moist air at 30 °C and 50% relative humidity enters a dehumidifier operating at steady state with a mass flow rate of 319.35 kg/min. The moist air passes over a cooling coil and water vapor condenses. Condensate (condensed water) exits at 10 °C. Saturated moist air exits in a separate stream at the same temperature. The pressure remains constant at 1 bar. Determine (a) the rate at which water is condensed, in kg/min, and (b) the heat transfer rate during...
a compressor operates at steady state. air enters the compressor with a mass flow rate of...
a compressor operates at steady state. air enters the compressor with a mass flow rate of 28800 kg/h at .99 bar and 27C and exits at 7.5 bar. the compressor operates adiabatically and the effects of motion and gravity can be ignored. the compressor isentropic efficiency is 70%. for exergy analysis the reference state is To=27C Po=.99 bar. use ideal gas model for air (MW=28.97 kg/kmol) a. determine required power for compressor in kW b. determine rate of exergy destruction...
Air at 277 oC and 1000 kPa enters a turbine operating at steady state with a...
Air at 277 oC and 1000 kPa enters a turbine operating at steady state with a mass flow rate of 70 kg/hr. It exits the turbine at 27 oC and 700 kPa. During this process heat is added from the surroundings at 77 oC to the turbine at a rate of 1000 kJ/hr. Using variable specific heats, determine whether this claim is correct. Justify your answer.
A condenser is essentially a type of heat exchanger that is used to remove heat from...
A condenser is essentially a type of heat exchanger that is used to remove heat from a vapor and convert it to liquid. The picture below shows a condenser that is used in a commercial refrigerator with refrigerant-134a as the working fluid. Water enters the condenser at 18ºC at a rate of 0.25 kg/s and leaves at 26ºC. The refrigerant enters the condenser at 1.2 MPa and 50ºC and leaves at the same pressure but at T=41.3ºC. a) Find the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT