Question

24. The composition by mass of a fuel oil is 0.857 carbon, 0.142 hydrogen and 0.001...

24. The composition by mass of a fuel oil is 0.857 carbon, 0.142 hydrogen and 0.001 incombustibles. Find the stoichiometric air/fuel ratio. If the dry exhaust gas analysis is found to be CO2 0.1229, N2 0.8395 and O2 0.0376 by volume, determine the actual air/ fuel ratio used.

ANSWER (14.68; 17.82 by carbon balance)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A fuel oil containing 70 % carbon by weight and the rest combustible hydrogen and moisture...
A fuel oil containing 70 % carbon by weight and the rest combustible hydrogen and moisture is burned with excess air. The flue gas analyzed 9 % CO2, 2 % CO, 3 % O2, and 86 % N2. Determine the following: The percentage of excess air. (15.1%) The ratio of carbon to combustible hydrogen in the fuel on a weight basis (3.35) The ratio of the carbon to total hydrogen in the fuel on a weight basis (3.19) The percentages...
A liquid petroleum fuel with carbon, hydrogen and other inert elements contains 84% carbon by mass....
A liquid petroleum fuel with carbon, hydrogen and other inert elements contains 84% carbon by mass. A volumetric analysis of the dry products of combustion shows 12.79% carbon dioxide, 0.31% carbon monoxide, oxygen 2.54% and the remainder nitrogen (the inert elements in the fuel transform into a solid in the reactor so they do not appear in the fuel gas). a) Determine the quantity of fuel burned per 100 mol of dry products, in grams. b) Determine the quantity of...
A certain alcohol fuel analysis indicates 64.9% carbon, 13.5% hydrogen and 21.6% oxygen by mass. Determine...
A certain alcohol fuel analysis indicates 64.9% carbon, 13.5% hydrogen and 21.6% oxygen by mass. Determine the equivalent molecular formula and the stoichiometric air fuel ratio by mass for this fuel.
Fuel oil which consists of hydrocarbon, CxHy is burnt in a combustion chamber at 25 °C....
Fuel oil which consists of hydrocarbon, CxHy is burnt in a combustion chamber at 25 °C. Standard heat of combustion is -43,515 J/g with CO2 (g) and H2O (l) as products. The temperature of the fuel and air entering the combustion chamber is 25 °C. and the air is assumed dry. The flue gases leave at 300 °C and their average composition is 11.2 % CO2, 0.4 % CO, 6.2 % O2 and 82.2 % N2 based on dry basis....
A high grade fuel oil containing only C and H is burnt in a furnace that...
A high grade fuel oil containing only C and H is burnt in a furnace that is well designed and well operated, giving a combustion gas, the Orsat analysis of which shows 12.4 % CO2, 3.7 % O2 and 83.9 % N2 and inerts. The air is substantially dry. Calculate a) % excess air b) C to H in the fuel
The mass composition of dry paper is 43% carbon, 6% hydrogen, 44% oxygen, and 7% other....
The mass composition of dry paper is 43% carbon, 6% hydrogen, 44% oxygen, and 7% other. Estimate the volume of air required to burn 1 kg of dry paper, assuming complete combustion at 20°C and 1 atm.
The combustion products from an industrial furnace using a hydrocarbon fuel and dry air enters the...
The combustion products from an industrial furnace using a hydrocarbon fuel and dry air enters the stack at normal barometric pressure and 375oF and have the following Orsatanalysis: 12.2% CO2, 3.1% O2, 1.2% CO, and82.5% N2. Determine the following: a.The percent excess air. b.The volume of the gases entering the stack expressed as cubic feet per pound of carbon burnt in the furnace. c.The atomic ratio of hydrogen to carbon in the fuel.
Determine the actual air-fuel ratio and mole flue gas composition (wet basis) for combustion with 20%...
Determine the actual air-fuel ratio and mole flue gas composition (wet basis) for combustion with 20% excess air for a coal with the following composition: 33.7% ash, 54.5% C, 3.8% H2, 5.6% O2, 1.1% N2, and 1.3% S
A coal has the following elemental (ultimate) analysis by weight: 78.4% carbon, 5.2% oxygen, 4.8% hydrogen,...
A coal has the following elemental (ultimate) analysis by weight: 78.4% carbon, 5.2% oxygen, 4.8% hydrogen, 1.4% nitrogen, 0.8% sulfur, and 9.4% ash. It is combusted with 25% excess air and the combustion is complete (thus CO2, H2O, and SO2 are formed due to combustion). The nitrogen from the air and the fuel does not undergo a reaction and leaves as N2 gas. Calculate the amount of air (in grams) required to combust 100 grams of coal. Calculate also the...
The ultimate analysis of a sample of petrol was 85.5% C and 14.5% H. Calculate (i)...
The ultimate analysis of a sample of petrol was 85.5% C and 14.5% H. Calculate (i) the stoichiometric A/F ratio; (ii) the A/F ratio when the mixture strength is 90%; (iii) the A/F ratio when the mixture strength is 120%; (iv) the analyses of the dry products for (ii) and (iii); (v) the volume flow rate of the products through the engine exhaust per unit rate of fuel consumption for (iii) when the pressure is 1.013 bar and the temperature...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT