Question

A 0.5 m3 rigid tank contains R 134a initially at 160 kPa and 30% quality. Heat...

A 0.5 m3 rigid tank contains R 134a initially at 160 kPa and 30% quality. Heat is transferred to the refrigerant until the refrigerant becomes saturated vapor. Determine the mass of refrigerant and the amount of heat transferred. (10)

Homework Answers

Answer #1

I hope you understand. Comment if you have any doubt.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.1-m3 rigid tank contains saturated liquid-vapor mixture of water, initially at 150 kPa and 52...
A 0.1-m3 rigid tank contains saturated liquid-vapor mixture of water, initially at 150 kPa and 52 percent quality. Heat is now transferred to the tank until the system becomes superheated vapor and the pressure reaches 300 kPa. Determine (a) the total mass of the mixture in the tank and (b) the amount of heat transferred.
A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a...
A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a temperature of 200 oC and a quality of 0.4. The top of the tank contains a pressure regulating valve which maintains the vapor at constant pressure. This system undergoes a process where it is heated until all the liquid vaporizes. How much heat in (kJ) is required? You may assume there is no pressure drop in the exit line.
Q3. A tank with rigid walls and a volume of 0.05 m3 initially has a two-phase...
Q3. A tank with rigid walls and a volume of 0.05 m3 initially has a two-phase liquid- vapor mixture of ammonia at a pressure of 4 bar and a quality of 10%. The tank is then heated such that the pressure is kept constant through a pressure-regulating valve that allows saturated vapor to escape. The heating continues until the quality of the mixture in the tank is 40%. Assume kinetic and potential energy changes are insignificant. Determine: (i) The final...
A rigid container with a volume of 2 m3 initially contains 0.05 m3 of liquid and...
A rigid container with a volume of 2 m3 initially contains 0.05 m3 of liquid and 1.95 m3 of vapor at 125 kPa. Heat is transferred from a 3000C source to the contents of the vessel until the pressure in the container reaches 4 MPa. The contents of the vessel are now cooled in a surrounding temperature of 250C until the contents reach its initial state. Determine total entropy generated (Sgen) during the cycle.
(10 pts) A 10 m3 rigid storage tank contains oxygen gas (R = 0.2598 kJ/kg.K, cp...
(10 pts) A 10 m3 rigid storage tank contains oxygen gas (R = 0.2598 kJ/kg.K, cp = 0.918 kJ/kg.K, cv = 0.658 kJ/kg.K). The tank is initially 200 kPa and 600o It is cooled to 25oC in 35 minutes. Determine: (3 pts) The mass of oxygen in the tank, in kg. (3 pts) The final pressure in the tank, in kPa. (4 pts) The rate of heat transfer from the oxygen, in kW.
Water of mass 2 kg in a closed, rigid tank is initially in the form of...
Water of mass 2 kg in a closed, rigid tank is initially in the form of a twophase liquid-vapor mixture. The initial temperature is 50° C. The mixture is heated until the tank contains only saturated vapor at 110° C. (i) Find the initial pressure, in kPa. (ii) Find the work for the process, in kJ. (iii) Find the heat transfer for the process, in kJ.
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of...
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of water at 100 kPa and half of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized (state 2). Determine (a) the initial specific volume in m3/kg, (b) the final specific entropy in kJ/kg.K and (c) change of entropy in kJ/K.
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of...
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of water at 100 kPa and half of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized (state 2). Determine (a) the initial specific volume in m3/kg, (b) the final specific entropy in kJ/kg.K and (c) change of entropy in kJ/K.
Refrigerant-134a enters a diffuser steadily as saturated vapour at 600 kPa with a velocity of 160...
Refrigerant-134a enters a diffuser steadily as saturated vapour at 600 kPa with a velocity of 160 m/s, and it leaves at 700 kPa and 40°C. The refrigerant is gaining heat at a rate of 2 kJ/s as it passes through the diffuser : determine (a- the exit velocity (b- the mass flow rate of the refrigerant. If the exit area is twice the inlet area (A2=2A1),
A closed, rigid tank is filled with water. Initially, the tank holds 1.0 lb of saturated...
A closed, rigid tank is filled with water. Initially, the tank holds 1.0 lb of saturated vapor and 7.0 lb of saturated liquid, each at 212°F. The water is heated until the tank contains only saturated vapor. Kinetic and potential energy effects can be ignored. Determine the volume of the tank, in ft3, the temperature at the final state, in °F, and the heat transfer, in Btu.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT