Question

A Rankine cycle operates with turbine inlet conditions of 600 psia and 600 degrees F. The...

A Rankine cycle operates with turbine inlet conditions of 600 psia and 600 degrees F. The steam is expanded through the turbine to a final exhaust pressure of 10 psia. What is the work done by the turbine, in BTU/lbm?

State your answer to the nearest whole number. Example: 123

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An 850-MW Rankine cycle operates with turbine inlet steam at 1200 psia and 1000°F and condenser...
An 850-MW Rankine cycle operates with turbine inlet steam at 1200 psia and 1000°F and condenser pressure at 1 psia. There are three feedwater heaters placed optimally as follows: (a) the high-pressure heater is of the closed type with drains cascaded backward; (b) the intermediate-pressure heater is of the open type; (c) the low- pressure heater is of the closed type with drains pumped forward. Each of the turbine sections has the same polytropic efficiency of 90 percent. The pumps...
A single shaft gas turbine engine receives air at atmospheric conditions of 14.7 psia and 80...
A single shaft gas turbine engine receives air at atmospheric conditions of 14.7 psia and 80 degrees F. The compressor discharge pressure is 103psia and the compressor efficiency is 87%. The turbine inlet temperature is 1980 degrees F and the exhaust temperature is 1173 degrees F. Assume a 3 psi pressure drop in the combustion chamber and that inlet and exhaust ducts losses are both 27.7 inches of water. Find: a) Sketch the system and label the state point locations...
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and...
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 6 psia in the condenser. The turbine inlet temperature is 800°F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. How much error is caused in the thermal efficiency if the power required by the pump were completely neglected? Use steam tables. The error caused in the thermal efficiency if...
8. Using the Mollier diagram, determine final steam pressure, in psia, if steam goes from 100...
8. Using the Mollier diagram, determine final steam pressure, in psia, if steam goes from 100 psia and 500 oF to 550 oF at constant enthalpy. State your answer in whole numbers. Example: 187 14. An ideal Rankine cycle operates without superheat (wet cycle) as shown in the following T-s diagram. If saturated steam is expanded from 300 psia to steam with 5 % moisture, use the Mollier diagram to determine the turbine outlet pressure, in psia. State your answer...
A steam power plant operates on the simple ideal rankine cycle between the pressure limits of...
A steam power plant operates on the simple ideal rankine cycle between the pressure limits of 50 kPa and 20 MPa, with a turbine inlet temperature of 600 Degree C. Disregarding the pump work, then: (a) Show the T-S diagram of the entire cycle. (b) Solve the total heat (kJ/kg) input for the cycle. (c) Solve the total heat (kJ/kg) reject by the cycle. (d) Solve the thermal efficiency of this plant.
n ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 290 K...
n ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 290 K and 95 kPa and a fixed turbine inlet temperature of 1650 K. For a compressor pressure ratio of 10, determine: (a) the exhaust temperature of the cycle, in K. (b) the back work ratio. (c) the net work developed per unit mass flowing, in kJ/kg. (d) the heat addition per unit mass flowing, in kJ/kg. (e) the thermal efficiency for the cycle.
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler and the condenser are 5000 kPa and 40 kPa, respectively. The temperatures at the inlet of the turbine and at the inlet of the pump are 500oC and 70oC, respectively. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible. If the mass flow rate of steam is 10 kg/s. Determine (a) the heat transfer rate in the boiler,...
Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400...
Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400 lbf/in2 and 1000°F. The condenser pressure is 2 lbf/in.2 The net power output of the cycle is 350 MW. Cooling water experiences a temperature increase from 60°F to 76°F, with negligible pressure drop, as it passes through the condenser. a) Determine the mass flow rate of steam, in lb/h. b) The rate of heat transfer, in Btu/h, to the working fluid passing through the...
A steam power plant operates on a superheated Rankine cycle where steam at 10kg/s entering the...
A steam power plant operates on a superheated Rankine cycle where steam at 10kg/s entering the turbine at 5MPa and 375˚C and leaving the turbine at saturated vapor at pressure 100 times less than initial. If the compressor efficiency is 85% 2.1. Sketch the cycle of T-s diagram. 2.2. Calculate the temperature and pressure for all points in the cycle. 2.3. Calculate the compressor work. 2.4. Calculate the turbine work and turbine efficiency. 2.5. Calculate the thermal efficiency of the...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that the water leaves the condenser as a saturated liquid at a pressure of 15 kPa. The pressure of the water leaving the pump is 5.0 MPa, and the temperature of the steam entering the turbine is 650 ºC. (a) Show the sketch and cycle on a T-s diagram. Determine (b) the thermal efficiency of the cycle and (c) the mass flow rate in kg/s....