Question

A hole develops in the wall of an initially-evacuated, rigid tank of volume 1.5 m3 ....

A hole develops in the wall of an initially-evacuated, rigid tank of volume 1.5 m3 . The hole allows propane from the surroundings to flow into the tank at a pressure of 1 bar and a temperature of 5⁰ C until the pressure inside the tank reaches 1 bar. Heat transfer between the tank and the surroundings is negligible. Determine the final temperature in the tank in ⁰C and the final mass contained inside the tank in kg.

Do Not use cp=1.68 and cv=1.48 unless you show how to get it. It may be in A book but it is not in MY book so it is not a useable value unless I can solve for it.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially,...
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially, the pressure and the temperature of the steam are 7 bar and 400°C, respectively. The temperature drops as a result of heat transfer to the surroundings. i. Determine the temperature at which the condensation first occurs in °C. [6 marks] ii. Evaluate the fraction of the total mass that has condensed when the pressure reaches 0.75 bar. [4 marks] iii. Calculate the volume in...
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially,...
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially, the pressure and the temperature of the steam are 7 bar and 400°C, respectively. The temperature drops as a result of heat transfer to the surroundings. i. Determine the temperature at which the condensation first occurs in °C. [6 marks] ii. Evaluate the fraction of the total mass that has condensed when the pressure reaches 0.75 bar. [4 marks] iii. Calculate the volume in...
Q3. A tank with rigid walls and a volume of 0.05 m3 initially has a two-phase...
Q3. A tank with rigid walls and a volume of 0.05 m3 initially has a two-phase liquid- vapor mixture of ammonia at a pressure of 4 bar and a quality of 10%. The tank is then heated such that the pressure is kept constant through a pressure-regulating valve that allows saturated vapor to escape. The heating continues until the quality of the mixture in the tank is 40%. Assume kinetic and potential energy changes are insignificant. Determine: (i) The final...
A tank of 0.1 m3 volume initially containing nitrogen at 25 C and 1 bar will...
A tank of 0.1 m3 volume initially containing nitrogen at 25 C and 1 bar will be filled with compressed nitrogen at a rate of 20 mol/s. The nitrogen coming from the compressor and into the tank is at an absolute pressure of 110 bar and a temperature of 80 C. The filling process occurs sufficiently rapidly that there is negligible heat transfer between the gas and the tank walls, and a valve is closed to stop the filling process...
A rigid, well-insulated tank, with a volume of 0.057 m3 , contains air at p1 =...
A rigid, well-insulated tank, with a volume of 0.057 m3 , contains air at p1 = 1.4 bar, T1 = 280 K. The air is stirred by a paddle wheel, resulting in an energy transfer to the gas of magnitude 6.78 kJ. Assuming ideal gas behavior for the air, determine the final temperature, in K, and the final pressure, in bar. Neglect kinetic and potential energy effects
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is...
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is connected by a valve to a large supply line carrying air at 295 K, 15 bar. The valve is opened only as long as required to fill the tank with air to a pressure of 15 bar. Finally, the air in the tank is at 310 K. The copper tank, which has a mass of 20 kg, is at the same temperature as the...
A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a...
A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a temperature of 200 oC and a quality of 0.4. The top of the tank contains a pressure regulating valve which maintains the vapor at constant pressure. This system undergoes a process where it is heated until all the liquid vaporizes. How much heat in (kJ) is required? You may assume there is no pressure drop in the exit line.
(10 pts) A 10 m3 rigid storage tank contains oxygen gas (R = 0.2598 kJ/kg.K, cp...
(10 pts) A 10 m3 rigid storage tank contains oxygen gas (R = 0.2598 kJ/kg.K, cp = 0.918 kJ/kg.K, cv = 0.658 kJ/kg.K). The tank is initially 200 kPa and 600o It is cooled to 25oC in 35 minutes. Determine: (3 pts) The mass of oxygen in the tank, in kg. (3 pts) The final pressure in the tank, in kPa. (4 pts) The rate of heat transfer from the oxygen, in kW.
An initially empty, well insulated, rigid tank with a volume of 2 m3 is fitted with...
An initially empty, well insulated, rigid tank with a volume of 2 m3 is fitted with a mixing device. The tank has two inlets and zero outlets. One inlet is water at 1 MPa and 600◦C while the other is saturated liquid water. Both enter the tank slowly. If the amount of work done by the mixing device is 300 kJ, what must the temperature of the saturated liquid water be if the same mass is added through both inlets...
A 1.2 m3 rigid tank initially contains steam at 8 MPa and 400 ◦C. The steam...
A 1.2 m3 rigid tank initially contains steam at 8 MPa and 400 ◦C. The steam slowly comes out through a hole at the bottom until the pressure drops to P0 while keeps the temperature constant. Making the pertinent considerations determines: a) the heat transferred, in kJ when P0 = 2 MPa. b) graph the heat transfer, in kJ, versus P0 from 0.5 to 8.0 MPa