Question

1. The 4.00mm thick glass windows of an automobile have a surface area of 2.60m². The...

1. The 4.00mm thick glass windows of an automobile have a surface area of 2.60m². The outside air temperature is 32.0° C. The air in the passenger compartment is maintained at 22.0° C. The convection heat transfer coefficient on the exterior window surface is 90.0W per square meter degree C.

a. Determine the heat transfer through the windows when the interior convection heat transfer coefficient is 15 W per meter squared degree C.

b. By controlling the airflow in the passenger compartment,the interior air heat transfer coefficient can be reduced to 5.00W per meter squared degree C without sacrificing passenger comfort. Determine the heat gain through the windows for the reduced inside heat transfer coefficient.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A carpenter builds an exterior house wall with a layer of wood 2.8 cm thick on...
A carpenter builds an exterior house wall with a layer of wood 2.8 cm thick on the outside and a layer of Styrofoam insulation 2.3 cm thick on the inside wall surface. The wood has k=0.080W/(m⋅K), and the Styrofoam has k= 0.010 W/(m⋅K). The interior surface temperature is 19.0 ∘C , and the exterior surface temperature is -11.0 ∘C . Part A What is the temperature at the plane where the wood meets the Styrofoam? Part B What is the...
A carpenter builds an exterior house wall with a layer of wood 3.0 cm thick on...
A carpenter builds an exterior house wall with a layer of wood 3.0 cm thick on the outside and a layer of Styrofoam insulation 2.2 cm thick on the inside wall surface. The wood has a thermal conductivity of 0.080 W/(m⋅K), and the Styrofoam has a thermal conductivity of 0.010 W/(m⋅K). The interior surface temperature is 16.0 ∘C, and the exterior surface temperature is -11.0 ∘C. Part A What is the temperature at the plane where the wood meets the...
Consider the vertical rear window of an automobile that has a thickness L= 9 mm and...
Consider the vertical rear window of an automobile that has a thickness L= 9 mm and height H=0.5 m with heating wires that create uniform volumetric heating. The window interior is exposed to ambient air at 10°C and the window exterior to air at -10°C which moves in parallel flow over the surface with a velocity of 20 m/s. The surface temperature of the window exterior is 12°C. Using the correlation developed by Churchill and Chu, find the convective heat...
On a cold night the temperatures of the two surfaces of a glass windowpane in a...
On a cold night the temperatures of the two surfaces of a glass windowpane in a house are 7.8° C on the outer surface and 8.0° C on the inner surface when the air temperature is 0° C outside and 25.0° C inside. The glass is 2.73 mm thick. (The thermal conductivity for glass is 0.8 W/m-C°.) (a) Find the rate at which heat is conducted through the glass per square meter of window area. (b) Find the value of...
a) What is the rate of heat transfer (by conduction) through the 3.00 cm thick fur...
a) What is the rate of heat transfer (by conduction) through the 3.00 cm thick fur of an animal having 1.40 m2 of surface area? The animal's skin temperature is 32.0 ˚C, and the air temperature is -5.00 ˚C, and assume fur has the same thermal conductivity as air. b) What (additional) food intake would this animal need to consume in one day to offset this energy loss due to heat transfer, assuming the added food energy is converted with...
An electrical current of 73.5A flows through a cable having a diameter of 5.00mm and a...
An electrical current of 73.5A flows through a cable having a diameter of 5.00mm and a resistivity of 6.90×10-7Ohm-meter.The cable is AISI 304 stainless steel. The cable is in an environment having a temperature of 30.0° C and a total heat transfer convection coefficient of 25.0W per square meter degree C. a. If the cable is bare,what is it surface temperature? b. What is the maximum (centerline) temperature in the cable?
71 mm thick horizontal plate made of an opaque material of thermal conductivity k= 25 W/m-K....
71 mm thick horizontal plate made of an opaque material of thermal conductivity k= 25 W/m-K. At the bottom, water flows at a temperature of T∞,w = 25C, whereas air flows at the top of the plate at T∞,a = 710 C having convection coefficient of ha= 71 W/m2-K. Assuming a diffused top of the plate that receives an irradiated flux of 7100W/m2, of which 30% is reflected back. The top and bottom surface temperatures are maintained at 43 C...
Steam at 350°F flows through a 3-in (ID) copper pipe having a thickness of 0.22 in....
Steam at 350°F flows through a 3-in (ID) copper pipe having a thickness of 0.22 in. The outside surface of the pipe is insulated with 1-in-thick layer of fiberglass and 0.008-in-thick layer of aluminum. The outside surface of the insulation is exposed to air at 130°F. The convection coefficients for steam and air are 25 and 12 Btu/h-ft2 -°F, respectively. The thermal conductivity of fiberglass is 0.022 Btu/h-ft-°F. a. Calculate the rate of heat transfer for 30-ft length of the...
A house has a composite wall of wood (exterior) (k = 0.12 W m-1 K -1...
A house has a composite wall of wood (exterior) (k = 0.12 W m-1 K -1 , 20 mm thick), fibreglass insulation (k = 0.045 W m-1 K -1 , 70 mm thick) and plasterboard (interior) (k = 0.25 W m-1 K -1 , 10 mm thick). Determine the total heat loss through the wall when the inside temperature is 20 °C, the outside temperature is -10 °C, the inside heat transfer coefficient is 15 W m-2 K -1 ,...
A 3-m-internal-diameter spherical tank made of 1-cm-thick stainless steel is used to store iced water at...
A 3-m-internal-diameter spherical tank made of 1-cm-thick stainless steel is used to store iced water at 0°C. The tank is located outdoors at 18°C. Assume the entire steel tank to be at 0°C and thus the thermal resistance of the tank to be negligible. The heat of fusion of water at atmospheric pressure is hif = 333.7 kJ/kg. The emissivity of the outer surface of the tank is 0.75, and the convection heat transfer coefficient on the outer surface can...