Question

water at the rate of 225 kg/hours is to be heated from 350C to 950C by...

water at the rate of 225 kg/hours is to be heated from 350C to 950C by means of a concentric tube heat exchanger. Oil at a rate of 225kg/hr with specific heat of 2095 J/kg.K and temperature of 2100C is to be used as the hot fluid. If the overall heat transfer coefficient based on the outer diameter of the inner tube is 550 W/m2.K, determine the length of heat exchanger if the outer diameter of the tube is 100 mm.

Homework Answers

Answer #1

Calculation is shown here is for counter flow concentric heat exchanger

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Air at 29°C (Cp = 1006 J/kg·°C) is to be heated to 70°C by hot oil...
Air at 29°C (Cp = 1006 J/kg·°C) is to be heated to 70°C by hot oil at 80°C (Cp = 2150 J/kg·°C) in a cross-flow heat exchanger with air mixed and oil unmixed. The product of heat transfer surface area and the overall heat transfer coefficient is 750 W/m2 ·°C and the mass flow rate of air is twice that of oil. Determine: (a) the effectiveness of the heat exchanger (b) the mass flow rate of air (c) the rate...
Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat...
Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat exchanger at 35 °C and leaves at 25 °C. The heat will be transferred to 150 kg/s of raw water coming from a supply at 15 °C. You are requested to design the heat exchanger for this purpose. A single shell and single tube pass is preferable. The tube diameter is ¾ in. (19 mm outer diameter with 16 mm inner diameter) and tubes...
A sugar solution (? = 1080 kg/m3, cp = 3601 J/kg ? K, kf = 0.5764...
A sugar solution (? = 1080 kg/m3, cp = 3601 J/kg ? K, kf = 0.5764 W/m ? K, ? = 1.3 × 10–3 N ? s/m2) flows at rate of 60,000 kg/hr and is to be heated from 25°C to 50°C. Water at 95°C is available at a flow rate of 75,000 kg/hr (cp = 4004 J/kg ? K). It is proposed to use a one shell pass and two tubes pass shell-and-tube heat exchanger containing 3/4 in. OD,...
A counter current double pipe heat exchanger is used to boil but not superheat water at...
A counter current double pipe heat exchanger is used to boil but not superheat water at 100 DegreeC at rate of about 0.1 kg/s. This is achieved by flowing hot oil at 400 DegreeC through the inner pipe at a rate of 5 kg/s. Latent heat of water: 2265 kJ/kg Heat capacity of water: 4180 J/kgK Heat capacity of the oil: 1800 J/kgK What is the temperature of he hot oil leaving the heat exchanger? What is the overall heat...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner pipe, NPS 2- nominal schedule 40 size (corresponding to an inner diameter of 52.5 mm and an outer diameter of 60.3 mm), and an outer stainless steel pipe of NPS 3-nominal schedule 40 (ID = 77.9 mm, OD = 88.9 mm). The heat exchanger has an effective length of 35 m. The inner pipe fluid is ammonia (?a = 0.3 · 10?6 m2/s, cpa...
A 1-shell-2-tube pass heat exchanger is made of a steel alloy (thermal conductivity 45.4 W/(m K)....
A 1-shell-2-tube pass heat exchanger is made of a steel alloy (thermal conductivity 45.4 W/(m K). It is used to cool distilled water from 34oC to 29oC using water which flows inside tubes with an outer diameter of 19 mm and an inner diameter of 16 mm. The number of tubes in the shell is 160 (80 per pass). The mass flow rate of distilled water in the shell is 76180 kg/h. The cold water enters the heat exchanger at...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner pipe, NPS 2- nominal schedule 40 size (corresponding to an inner diameter of 52.5 mm and an outer diameter of 60.3 mm), and an outer stainless steel pipe of NPS 3-nominal schedule 40 (ID = 77.9 mm, OD = 88.9 mm). The heat exchanger has an effective length of 35 m. The inner pipe fluid is ammonia (va = 0.3 · 10-6m2/s, cpa =...
Hot oil at a rate of 5 kg/s (Cpm= 2 kJ/kg. K) enters in a 2-4...
Hot oil at a rate of 5 kg/s (Cpm= 2 kJ/kg. K) enters in a 2-4 shell and tube heat exchanger at 366 K and is cooled to 344 K by 2 kg/s of water (Cpm= 4 kJ/kg. K) entering at 283 K. The overall heat transfer coefficient U0 is 340 W/m . Calculate the area requied. If the length of each tube is 1.2 m, and the diameter of each tube is 0.1 m, calculate the number of tubes?
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a...
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a pressure of 0.51 bar. The vapor is to be completely condensed to saturated liquid in a shell-and-tube heat exchanger that uses city water as the cold fluid. The water enters the thin-walled tubes at 17oC and is to leave at 57.6 oC. Assuming an overall heat transfer coefficient of 2000 W/m2K, determine the required heat exchanger surface area and the water flow rate. cp,c...
Liquid carbon dioxide at a flow rate of 100 000 kg/hr is to be heated from...
Liquid carbon dioxide at a flow rate of 100 000 kg/hr is to be heated from 0°C to 20°C in a 1-2 shell and tube heat exchanger. Water is available at a flow rate of 113 000 kg/hr and a temperature of 40°C. A 25-in. (635 mm)-ID 1-2 shell and tube exchanger having 3/4-in., 10 BWG tubes laid out on a 1-in. triangular pitch is available. The tubes are 2 m long and the exchanger contains three baffles. Determine expected...