Question

2. A geothermal power plant is supplied with water at 260°C and a pressure of 10...

2. A geothermal power plant is supplied with water at 260°C and a pressure of 10 MPa. The fluid flows to a flash unit, exiting as liquid and vapor streams at 0.5 bar. Vapor from the flash unit is fed to a turbine. The turbine exit pressure is 0.02 bar. The overall turbine efficiency is 0.83. Calculate the thermal efficiency, the heat rate, and steam and water mass flow rates required for an output of 5 MW.

Can someone help, please?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. Determine the quality of the steam at the turbine exit. Use steam tables. (You must provide an answer before moving on to the next part.) a.)The quality of the steam at the turbine exit is? b.)Determine the thermal efficiency of the cycle.The thermal efficiency of...
In a steam power plant which has a net power output of 45 MW, steam is...
In a steam power plant which has a net power output of 45 MW, steam is supplied at 10 MPa and 500°C. The steam is reheated after passing through high pressure turbine to its original temperature at a pressure of 1 MPa. Then the steam expanded to condenser pressure. The condenser pressure is 5 kPa. Show the cycle on a T-s diagram with respect to saturation lines, and determine; (i) the thermal efficiency of the cycle; and (ii) the mass...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. a.)Determine the quality of the steam at the turbine exit. Use steam tables. b.)Determine the thermal efficiency of the cycle. c.)Determine the mass flow rate of the steam
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 17 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...
A power plant uses an adiabatic single-flash process coupled with a liquid-vapor separator and a turbine....
A power plant uses an adiabatic single-flash process coupled with a liquid-vapor separator and a turbine. (1) Flash Chamber (2) Seperator (3) Steam Turbine. Saturated liquid water enters the flash chamber (which behaves like a throttling valve) at 230 degrees C at a rate of 44 kg/s and leaves at a pressure of 700 kPa. The stream then enters the separator where the liquid is collected at the bottom of the unit while the vapor portion of the stream continues...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that the water leaves the condenser as a saturated liquid at a pressure of 15 kPa. The pressure of the water leaving the pump is 5.0 MPa, and the temperature of the steam entering the turbine is 650 ºC. (a) Show the sketch and cycle on a T-s diagram. Determine (b) the thermal efficiency of the cycle and (c) the mass flow rate in kg/s....
Consider a power plant operating on a Rankine cycle using steam as the working fluid. The...
Consider a power plant operating on a Rankine cycle using steam as the working fluid. The boiler pressure is 2.8 MPa and the steam leaving the boiler is superheated to a temperature 110 0C above its saturation temperature. The condenser temperature is 49 0C. Condenser discharges saturates liquid. The efficiency of the turbine is 0.90 and of the pump 0.8 as compared to reversible and adiabatic machines operating at the same pressure ranges. a) Sketch the cycle on a T-S...
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55%...
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55% with a flowrate of steam of 2 kg/s.  Heat is supplied to the boiler of 2500 kJ/kg. The pump takes in saturated liquid water at 100 kPa and has an exit pressure of 10 MPa.  Determine: the exit temperature of the pump (oC)  (3 pts) the work of the turbine (kW) (3 pts) the heat exhausted from the condenser (kJ/s) (3 pts)
Water is the working fluid in a Rankine cycle with reheat. Superheated vapor enters the turbine...
Water is the working fluid in a Rankine cycle with reheat. Superheated vapor enters the turbine at 10 MPa, 520°C, and the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 520°C. The pump and each turbine stage have an isentropic efficiency of 70%. Determine for the cycle: (a) the heat addition, in kJ per kg of steam entering the first-stage turbine. (b) the percent thermal efficiency. (c) the magnitude...
A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits...
A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 17.5 MPa in the boiler and 30 kPa in the condenser. What is the minimum temperature required at the turbine inlet such that the quality of the steam leaving the turbine is not below 80%? When operated at this temperature, what is the thermal efficiency of this cycle?