Question

1) An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as...

1) An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows:

1-2 isentropic compression from an initial temperatureT1= 20 degree celsius with a compression ratio r = 5

2-3 constant pressure heat addition 3-1 constant volume heat rejection

The gas has constant specific heats with cv = 0.7 kJ/kg·K and R= 0.3 kJ/kg·K.

(a) Sketch the P-v and T-s diagrams for the cycle.
(b) Determine the heat and work interactions for each pro-cess, in kJ/kg.   (c) Determine the cycle thermal efficiency.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal monatomic gas is contained within a cylinder by a moveable piston. The gas is...
An ideal monatomic gas is contained within a cylinder by a moveable piston. The gas is in thermal contact with a heat bath initially at 310 K. What is the change in molar entropy if the gas is heated to 600 K if: A. The piston is blocked B. The piston is allowed to move freely against atmospheric pressure
Three kilograms of air within a piston-cylinder assembly executes a Carnot power cycle. The isothermal expansion...
Three kilograms of air within a piston-cylinder assembly executes a Carnot power cycle. The isothermal expansion occurs at 700K from 1.25 bar to 0.85 bar; the air can be treated as an ideal gas. If the cycle thermal efficiency is 65%, - determine the temperature of the isothermal compression - calculate the net work developed for the cycle in kJ - draw the cycle on both Pv and Ts diagrams, labelling the types of processes and including arrows to show...
Water, initially (state 1) a saturated liquid at 1100C, is contained in a piston-cylinder assembly. The...
Water, initially (state 1) a saturated liquid at 1100C, is contained in a piston-cylinder assembly. The water undergoes a process to the corresponding saturated vapor (state 2), during which the piston moves freely in the cylinder. If the change of state is brought about by heating the water as it undergoes an internally reversible process at constant pressure and temperature, determine (a) heat transfer using first law of thermodynamics in kJ/kg and (b) heat transfer using second law of thermodynamics...
Your new engine design consists of a piston cylinder arrangement. The engine operates with mostly air...
Your new engine design consists of a piston cylinder arrangement. The engine operates with mostly air and a small amount of fuel. The system undergoes a cycle. The initial Pressure and temperature are p1= 1bar and T1= 27°C. The system undergoes a power cycle consisting of the following process: Process 1-2                         constant volume to a pressure, P2 of 4 bars Process 2-3                         expansion of pv=constant Process 3-1                         constant-pressure compression Draw the system and pv diagrams If P2 is 4...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state of 800 kPa, 500 K. Initially air is at 110 kPa and 25oC. During the compression process heat transfer takes place with the ambient maintained at 25oC. Assume air as an ideal gas (R =0.287 kJ/kg) and has constant specific heats of Cp = 1.004 kJ/kgK and Cv = 0.717 kJ/kgK. If the mass of air in the cylinder is 0.1286 kg, determine a)...
One gram-mole of ideal gas is contained in a piston-cylinder assembly. Cp=(7/2)R, Cv=(5/2)R. The gas expands...
One gram-mole of ideal gas is contained in a piston-cylinder assembly. Cp=(7/2)R, Cv=(5/2)R. The gas expands from 3 to 1 atm. Heat of 1000J is transferred to the gas during the process. External pressure maintains at 1 atm throughout. Initial temperature of the gas is 300K. Find work and internal energy change.
A piston cylinder device contains a mixture of 0.2 kg of H2 and 1.6 kg of...
A piston cylinder device contains a mixture of 0.2 kg of H2 and 1.6 kg of N2 at 100 kPa and 300K. Heat is now transferred to the mixture at constant pressure unitl the volume is doubled. Assuming constant specific heats at the average temperature (the constant pressure specific heats of H2 and N2 are 14.501 kJ/kg°K and 1.049 kJ/kg°K, respectively), determine: a) the heat transfer. b) the entropy change of the mixture.
Oxygen gas is contained in a piston cylinder assembly at an initial pressure of 1000 kPa...
Oxygen gas is contained in a piston cylinder assembly at an initial pressure of 1000 kPa and expands from 0.2 m3 to 1.0 m3 by a process where PV = constant. The gas has an internal energy change of -200 kJ. Calculate the work (kJ) and the heat transfer (kJ) done during the process.
Steam undergoes an isentropic compression in an insulated piston–cylinder assembly from an initial state where T1...
Steam undergoes an isentropic compression in an insulated piston–cylinder assembly from an initial state where T1 = 120°C, p1 = 1 bar to a final state where the pressure p2 = 20 bar. Determine the final temperature, in °C, and the work, in kJ per kg of steam. The final temperature equals 513.87°C.
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas...
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas while the piston remains locked in place until the absolute temperature of the gas doubles. 1. The pressure of the gas a. doubles b. stays the same c. drops in half 2. The work done by the surroundings on the gas is a. positive b. negative c. zero 3. The thermal energy of the gas a. doubles b. stays the same c. drops in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT