Question

The compression ratio of an air-standard Diesel cycle is 17 and the conditions at the beginning of compression are p1 = 14.0 lbf/in.2, V1 = 2 ft3, and T1 = 520°R. The maximum temperature in the cycle is 4000°R. Calculate (a) the net work for the cycle, in Btu. Btu (b) the thermal efficiency. % (c) the mean effective pressure, in lbf/in.2 lbf/in.2 (d) the cutoff ratio.

Answer #1

At the beginning of the compression process of an air-standard
Diesel cycle operating with a compression ratio
of 20, the temperature is 350 K and the pressure is 0.15 MPa.
The cutoff ratio for the cycle is 1.5. Determine
(a) the temperature and pressure at the end of each process of
the cycle, (b) the thermal efficiency, (c) the mean
effective pressure, in MPa.

The compression ratio in an air-standard Otto cycle is 8. At the
beginning of the compression stroke the pressure is 14.7 lbf/in2
and the temperature is 600F. The heat transfer to the air during
the combustion process per cycle is 800 Btu/lbm. Determine: (a) The
pressure and temperature at the end of each process of the cycle.
(b) The thermal efficiency (use k = 1.4, Cv = 0.171 Btu/lbm
0F).

The compression ratio in an air-standard Otto cycle is 8. At the
beginning of the compression stroke the pressure is 14.7 lbf/in2
and the temperature is 600F. The heat transfer to the air during
the combustion process per cycle is 800 Btu/lbm. Determine: (a) The
pressure and temperature at the end of each process of the cycle.
(b) The thermal efficiency (use k = 1.4, Cv = 0.171 Btu/lbm
0F).

A
diesel cycle operates with a compression ratio of 16:1. The
conditions at the beginning of compression are T= 90 F , p= 14.6
psia. The maximum volume in the cylinder is 85 in^3. The maximum
temperature in the cycle is 1740 degrees R. The cycle can be
considered ideal, except, that the compression stroke is only
polytropic with n = 1.31.
A) what is the mass of (air + fuel) in the cylinder?
B) what is the maximum pressure...

1) An air-standard Otto cycle has a compression ratio of 9. At
the beginning of the compression process, the temperature is 20°C,
and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine
the cycle efficiency, work output, and the heat rejected
2) An air-standard Otto cycle operates with a minimum
temperature of 300 K and a maximum temperature of 1700 K. The
compression ratio of the cycle is 7. At the beginning of the
compression process, the...

10) An air-standard Otto cycle has a compression ratio of 9. At
the beginning of the compression process, the temperature is 20°C,
and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine
the cycle efficiency, work output, and the heat rejected.
11)An air-standard Otto cycle operates with a minimum
temperature of 300 K and a maximum temperature of 1700 K. The
compression ratio of the cycle is 7. At the beginning of the
compression process, the pressure...

In an air standard diesel cycle compression starts at 100kpa and
300k. the compression ratio is 16 to 1. The maximum cycle
temperature is 2031K. Determine the thermal efficiency.
Please help
Thank you

At the beginning of the compression process of an air-standard
Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 6
and the heat addition per unit mass of air is 1500 kJ/kg.
Determine: (a) the maximum temperature of the cycle, in K. (b) the
net work, in kJ/kg. (c) the percent thermal efficiency of the
cycle. (d) the mean effective pressure, in kPa.

Consider a cold air-standard Diesel cycle. At the beginning of
compression, 102 kPa, and 300 K. The mass of air is 0.120 kg, the
compression ratio is 16, and the cut-off ratio is 2.0
For a cold air-standard analysis use the following values: cp =
1.005 kJ/kgK, cv = 0.718 kJ/kgK, k=1.40, M=28.97 kg/kmol.
Determine the following :
(a) pressure at end of compression stroke, in kPa
(b) temperature at end of compression stroke, in K
(c) maximum temperature in...

A
diesel cycle has a compression ratio of 18 and an intake cutoff
ratio of 3. At the beginning of the compression process, the
working fluid is at 100 Kpa and 20 degrees C. assuming variation of
the specific heats find the temperature and pressure of the air in
each state, the heats of input and output per unit mass and thermal
efficiency.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 3 minutes ago

asked 4 minutes ago

asked 5 minutes ago

asked 5 minutes ago

asked 5 minutes ago

asked 5 minutes ago

asked 5 minutes ago

asked 8 minutes ago

asked 8 minutes ago

asked 8 minutes ago

asked 8 minutes ago

asked 8 minutes ago