Question

Select 1 m / s for a wall-illuminated 3 mm, inner 10 mm, 100 m long...

Select 1 m / s for a wall-illuminated 3 mm, inner 10 mm, 100 m long pipe, the incoming fluid entering 85 is cooled to 75 ℃. Apart from the pipe, there is a heat transfer coefficient of 7.8 W / m2.K and cross flowing water.
a) Calculate the temperature before the fluid.
b) Is the fluid flow laminar in the pipe? Is it turbulent? Why?
c) Calculate the heat transfer coefficient between the fluid and the inner surface of the pipe.
d) Calculate the thermal resistance of the inside, outside and wall of the pipe.

fluid:    J/kg.K      kg/m3       

                 m2/s                       

Boru: kboru=240 Wm.K

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 12 meter long and 12 mm inner diameter smooth pipe is used to heat a...
A 12 meter long and 12 mm inner diameter smooth pipe is used to heat a liquid in an industrial process. The liquid enters the pipe at a temperature of 25o C and a mean velocity of 0.80 m/s. A uniform heat flux is maintained by an electric resistance heater wrapped around the outer surface of the pipe so that the fluid exits at 75o C. The fluid average properties are ? = 1000 kg/m3 , Cp = 4000 J/kg·K,...
A pipe is transporting saturated steam at 1 bar (100°C) . The pipe has an inside...
A pipe is transporting saturated steam at 1 bar (100°C) . The pipe has an inside diameter of 100 mm with a 9 mm thick wall. The pipe is mild steel with a thermal conductivity of 80 W m-1 K-1. Covering the pipe is a 20 mm thick layer of polythene insulation with a thermal conductivity of 0.04 W m-1 K-1. The convective heat transfer coefficient of the steam is 513.4 W m-2 K-1. The convective heat transfer coefficient of...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner pipe, NPS 2- nominal schedule 40 size (corresponding to an inner diameter of 52.5 mm and an outer diameter of 60.3 mm), and an outer stainless steel pipe of NPS 3-nominal schedule 40 (ID = 77.9 mm, OD = 88.9 mm). The heat exchanger has an effective length of 35 m. The inner pipe fluid is ammonia (?a = 0.3 · 10?6 m2/s, cpa...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner pipe, NPS 2- nominal schedule 40 size (corresponding to an inner diameter of 52.5 mm and an outer diameter of 60.3 mm), and an outer stainless steel pipe of NPS 3-nominal schedule 40 (ID = 77.9 mm, OD = 88.9 mm). The heat exchanger has an effective length of 35 m. The inner pipe fluid is ammonia (va = 0.3 · 10-6m2/s, cpa =...
A Parabolic trough concentrator with width of 3 m and length of 25 m has an...
A Parabolic trough concentrator with width of 3 m and length of 25 m has an absorbed solar radiation per unit area of aperture of 600 W/m2. The receiver is a cylinder with an emittance of 0.3 and is surrounded by an evaluated glass cylindrical envelope. The absorber has a diameter of 50 mm and the transparent envelope has an outer diameter of 100 mm with a thickness of 5 mm. The collector is designed to heat a fluid entering...
(a) Fluid at a mass flow rate of 0.352 kg/s flows through a tube with a...
(a) Fluid at a mass flow rate of 0.352 kg/s flows through a tube with a diameter of 15 mm and a length of 25 m. The inner surface of the tube is heated with a uniform heat flux of 1000 W/m2. Measurements shown that the inlet temperature of the fluid is 30 ˚C. Assume the outer surface of the tube is perfectly insulated. Consider the thermophysical properties of the fluid are as follows: density ρ = 1000 kg/m3, specific...
You want to limit the heat flux density (heat intensity) by a wall to 10 W...
You want to limit the heat flux density (heat intensity) by a wall to 10 W / (m2). The outside temperature is 4 ° C and the internal temperature 37 ◦C. How thick should a steel wall (λ = 17, 3 W / (m · K)) be to meet requirements? How thick must a mineral wool disk (λ = 0, 038 W / (m · K) be) to give the same greatest heat intensity? Disregard the heat transfer rates between...
In a coal fired power plant, a furnance Wall consists of a 125 mm wide refractory...
In a coal fired power plant, a furnance Wall consists of a 125 mm wide refractory brick and a 125 mm wide insulating firebrick separated by an air gap as shown in figure. The outside Wall is covered with a 12 mm thickness of plaster. The inner surface of Wall is at 1100 °C, and then room temp is 25 °C. The Heat transfer coefficient from the outside Wall surface to air in room is 17 W/m^2 K, resistance to...
Liquid, pumped through the inside of the pipe, is at a temperature Ti = 400K and...
Liquid, pumped through the inside of the pipe, is at a temperature Ti = 400K and provides a convection coefficient hi = 450 W/m2-K at the inner surface of the pipe. The inside and outside radii of the pipe are r1 = 0.25 m, r2 = 0.31 m. The thermal conductivity of the pipe is 240 W/m-K. The outside radius of the insulation, r3 = 0.35 m. The thermal conductivity of the insulation is 20 W/m-K. The outside surface is...
a)      A vertical plate of 700 mm wide and 120 cm height is maintained at a...
a)      A vertical plate of 700 mm wide and 120 cm height is maintained at a temperature of 95oC in a room at 25oC with an air conditioning with velocity of 36000 cm/min. Calculate the heat transfer coefficient and convective heat transfer rate. (b)      Two concentric cylinders are located in a large room. Determine the view factors for the two cylinders when the length is 20 cm, the inner radius (r1) is 5 cm and the outer radius (r2) 10...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT