Question

There is a heat pump that operates with R 134ª refrigerant, whose compressor has a power...

There is a heat pump that operates with R 134ª refrigerant, whose compressor has a power of 5 kW. The heat pump condenser is used to heat oil from a temperature of 0 degrees Celsius, up to a temperature of 20 ° C, so the condenser operates with a condensation temperature of 40 ° C. Furthermore, the evaporator operating with an evaporation temperature of 5 ° C, it is desired to use to air conditioning from a temperature of 35 ° C and a relative humidity of 50% to a final temperature of 20 ° C and a relative humidity of 60%
DETERMINE.
1.1.-COP as a heat pump
1.2.-COP as refrigeration equipment.
1.3.-Electric power of heaters to achieve the required humidity, kW
1.4.-Oil flow, l / min, that can be heated.
1.5.-Air flow, m3 / h that can be cooled.
1.6.-Diagrams p-h,Psychometric and T-s of the process in the equipment.
1.7.-Diagram of how you would do the oil heating and air conditioning system.Psychometric diagram

Please try to be clear and orderly in development

Homework Answers

Answer #1

P.S: If you are having any doubt, please comment here, I will surely reply you.Please provide your valuable feedback by a thumbsup. Your thumbsup is a result of our efforts. Thanks in advance!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12)...
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12) is used as the working fluid with a mass now rate of 0.04kg/s. saturated vapour eaters the compressor at 0.5 MPa and leaves to the condenser at 1.2IMPa. The air-conditioner cools down the station to 26°C through an evaporator, and rejects heat to the 34°C ambient through a condenser. (a) Sketch and label the schematic of the air-conditioning cycle and its T-S and P-h...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity of 60,000 Btu/h. The condenser operates at 240 lbf/in.2, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a liquid at 110°F at the condenser exit. Pressure drops in the flows through the evaporator and condenser are negligible. The compression process is adiabatic, and the temperature at the compressor exit is 180°F. Determine (a) the mass...
An air-conditioning system with R134a as the working fluid operates on an ideal vapor compression refrigeration...
An air-conditioning system with R134a as the working fluid operates on an ideal vapor compression refrigeration cycle. The working pressure of the evaporator and the condenser are 200 kPa and 1.0 MPa, respectively. The refrigerant flow rate is 0.03 kg/s. a) Draw the process cycle on a T-s diagram with labels. b) Determine the power input and COP of the system. c) Determine the tons of refrigeration. d) What is the SEER rating of the system? e) What is the...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 8 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW, (b) the refrigeration capacity, in tons, (1 ton = 3.5168 kW) and, (c) the coefficient of performance, (d) rate of entropy production in kW/K, for the...
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to...
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to heat a dwelling on a day when the outside temperature is below freezing. Saturated vapor enters the compressor at 2.6 bar, and saturated liquid exits the condenser, which operates at 8 bar. Determine for an isentropic compressor efficiency of 85%: (a) the refrigerant mass flow rate, in kg/s. (b) the magnitude of the compressor power, in kW. (c) the coefficient of performance.
a heat pump operates on the ideal vapor compression refrigerant cycle and uses redrigerant-134a as thebworking...
a heat pump operates on the ideal vapor compression refrigerant cycle and uses redrigerant-134a as thebworking fluid. the condensor operates at 1200kpa and the evaportor at 280kpa. calculate 1) the cop of the heat pump 2) the rate of heat supplied to the evaporator when compressor consumes 20kw
A geothermal heat pump is used in winter for space heating by getting heat from the...
A geothermal heat pump is used in winter for space heating by getting heat from the ground at 15 °C. The working fluid in the heat pump is R134a. The compressor inlet is at 400 kPa and the compressor exit is at 2 MPa and 60 C. The mass flow rate of the refrigerant is 0.1 kg / s and the temperature difference in the air flow in the condenser section is 12 C. The refrigerant is subcooled to 15...
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature...
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature of -12 °C and a condenser pressure of 15 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The refrigerating capacity is 4 tons. a.Determine the compressor power (in kW). b.Determine the mass flow rate of the refrigerant (in kg/min). c.Determine the coefficient of performance.
A heat pump using refrigerant-134a heats a house by using underground water at 8°C as the...
A heat pump using refrigerant-134a heats a house by using underground water at 8°C as the heat source. The house is losing heat at a rate of 64000 kJ/h. The refrigerant enters the compressor at 240 kPa and 0°C and leaves at 1.4 MPa and 80°C. The refrigerant exits the condenser at 34°C. a.)Determine the power input to the heat pump. kW b.)Determine the rate of heat absorption from the water. kW c.)Determine the increase in electric power input if...
A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space...
A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at −30°C by rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.32 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and −34°C and the compressor is estimated to gain a net heat of 460 W...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT