Question

71 mm thick horizontal plate made of an opaque material of thermal conductivity k= 25 W/m-K....

71 mm thick horizontal plate made of an opaque material of thermal conductivity k= 25 W/m-K. At the bottom, water flows at a temperature of T∞,w = 25C, whereas air flows at the top of the plate at T∞,a = 710 C having convection coefficient of ha= 71 W/m2-K. Assuming a diffused top of the plate that receives an irradiated flux of 7100W/m2, of which 30% is reflected back. The top and bottom surface temperatures are maintained at 43 C and 35 C, respectively. By analyzing the radiation heat transfer coupled with conduction and convection, determine the transmissivity, reflectivity, absorptivity, and emissivity of the plate? Also determine the radiosity of the top of the plate and the water side convection heat transfer coefficient? ?=5.67×10−8 ?/?2?4

Homework Answers

Answer #1

The numerical is solved in the below images

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1-shell-2-tube pass heat exchanger is made of a steel alloy (thermal conductivity 45.4 W/(m K)....
A 1-shell-2-tube pass heat exchanger is made of a steel alloy (thermal conductivity 45.4 W/(m K). It is used to cool distilled water from 34oC to 29oC using water which flows inside tubes with an outer diameter of 19 mm and an inner diameter of 16 mm. The number of tubes in the shell is 160 (80 per pass). The mass flow rate of distilled water in the shell is 76180 kg/h. The cold water enters the heat exchanger at...
Consider a large uranium plate of thickness 5 cm and thermal conductivity k = 28 W/m...
Consider a large uranium plate of thickness 5 cm and thermal conductivity k = 28 W/m K in which heat is generated uniformly at a constant rate of q˙ = 6 × 10^5 W/m^3 . One side of the plate is insulated while the other side is subjected to convection in an environment at 30◦C with a heat transfer coefficient of h = 60 W/m2 K. Considering six equally spaced nodes with a nodal spacing of 1 cm, (a) Sketch...
1. A thick metal plate (alpha = 3.5 x 10-6 m2/s and k = 0.7 W/m-K),...
1. A thick metal plate (alpha = 3.5 x 10-6 m2/s and k = 0.7 W/m-K), initially at a uniform temperature of 100oC, is suddenly exposed to a convection environment of water at 20oC, giving a very large convection coefficient. a. Sketch the surface heat flux, q", as a function of time b. Using an explicit numerical scheme with a time step of 60 s, calculate the time required for the temperature to change 80 mm from the surface.
Consider a cube of density, specific heat, and thermal conductivity of 2700 kg/m3, 0.896 kJ/kg-K, and...
Consider a cube of density, specific heat, and thermal conductivity of 2700 kg/m3, 0.896 kJ/kg-K, and 204 W/m-K, respectively. The cube is 5 cm in length, and is initially at a temperature of 20 oC. For t>0, two of the boundary surfaces are insulated, two are subjected to uniform heating at a rate of 10,000 W/m2, and two dissipate heat by convection to an ambient temperature of 20 oC, with a heat transfer coefficient of 50 W/m2-K. Assuming lumped capacitance...
Q. Unsteady conduction A large steel plate 0.02 m thick leaves a heat treating furnace at...
Q. Unsteady conduction A large steel plate 0.02 m thick leaves a heat treating furnace at 425 oC. And the plate is plunged into water (at 25 oC) and cooled from both sides. How long does it take for the maximum temperature to reach 65 oC? For steel plate: thermal conductivity, k=30 W/m·K, density ?=7600 kg/m3, heat capacity cp=700 J/kg·K. Heat transfer coefficients: h=6000 W/m2·K in water. Please use two methods to calculate this question: (1) Directly apply the exact...
Homework-9 Due: Q) A fuel plate is fabricated from 0.3 cm thick 1.5% enriched uranium. The...
Homework-9 Due: Q) A fuel plate is fabricated from 0.3 cm thick 1.5% enriched uranium. The cladding is 0.25 mm 304 stainless steel. The coolant saturation temperature is 260 oC. The average thermal neutron flux is 2.5 X 1014 neutrons/cm2 /s. The surface temperature of the clad is 350 oC. Assume any missing data to answer the following questions:. 1) Write an expression of the heat generated per unit volume 2 What is the heat flux at the surface of...
4.1A membrane made of 0.1 mm thick soft rubber separates pure O2 at 1 atm and...
4.1A membrane made of 0.1 mm thick soft rubber separates pure O2 at 1 atm and 25oC from air at 1.2 atm pressure. Determine the mass flow rate of O2 through the membrane per unit area and the direction of flow. Molar flow rate of oxygen is given by: ???? = ???????? / ??? (????1 ? ????2 ) where S is solubility of oxygen in rubber. The mass diffusivity of oxygen in rubber at 298 K is DAB = 2.1...
4-23 After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800...
4-23 After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3, and cp = 880 J/kg·K) are conveyed through a cooling chamber with a length of 10 m. The plates enter the cooling chamber at an initial temperature of 500°C. The cooling chamber maintains a temperature of 10°C, and the convection heat transfer coefficient is given as a function of the air velocity blowing over the plates h = 33V0.8, where h is in...
After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3,...
After heat treatment, the 2-cm thick metal plates (k = 180 W/m·K, ρ = 2800 kg/m3, and cp = 880 J/kg·K) are conveyed through a cooling chamber with a length of 10 m. The plates enter the cooling chamber at an initial temperature of 500°C. The cooling chamber maintains a temperature of 10°C, and the convection heat transfer coefficient is given as a function of the air velocity blowing over the plates h = 33V0.8, where h is in W/m2·K...
A grey body is one whose absorptivity 1. does not vary with temperature and wavelength of...
A grey body is one whose absorptivity 1. does not vary with temperature and wavelength of the incident ray 2. is equal to its emissivity 3. varies with temperature 4. varies with wavelength of the incident ray A liquid is in equilibrium with its vapor at its boiling point. On an average, the molecules in the liquid and gaseous phases have equal 1. potential energy. 2. kinetic energy. 3.temperature. 4. intermolecular forces of attraction. A liquid of density 1000 kg/m3...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT