Question

You’ve developed a cold air standard Brayton cycle with input from combustion of 5.0×10^6 Btu/h with...

You’ve developed a cold air standard Brayton cycle with input from combustion of 5.0×10^6 Btu/h with a mass flow rate of 6 lb(mass)/s. Air enters the turbine at 2800°R and exit at 520°R the cycle has a compression pressure ratio of 12. If the specific heat is evaluated at 500°R and the turbine and compressor both have isentropic and chopping efficiencies of 95%. what is the net power developed by the cycle in hp.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An air-standard Brayton cycle has a compressor pressure ratio of 10. Air enters the compressor at...
An air-standard Brayton cycle has a compressor pressure ratio of 10. Air enters the compressor at p1 = 14.7 lbf/in.2, T1 = 70°F, with a mass flow rate of 90,000 lb/h. The turbine inlet temperature is 1800°R. Calculate the thermal efficiency and the net power developed, in horsepower, if (a) the turbine and compressor isentropic efficiencies are each 100%. % hp (b) the turbine and compressor isentropic efficiencies are 88 and 84%, respectively. % hp (c) the turbine and compressor...
Incorrect answer. Your answer is incorrect. Try again. An air-standard Brayton cycle has a compressor pressure...
Incorrect answer. Your answer is incorrect. Try again. An air-standard Brayton cycle has a compressor pressure ratio of 10. Air enters the compressor at p1 = 14.7 lbf/in.2, T1 = 70°F, with a mass flow rate of 90,000 lb/h. The turbine inlet temperature is 1900°R. Calculate the thermal efficiency and the net power developed, in horsepower, if (a) the turbine and compressor isentropic efficiencies are each 100%. Entry field with incorrect answer 47.56 % Entry field with incorrect answer 5468.73...
The rate of heat addition to an air-standard Brayton cycle is 3.4 times 109 Btu/h. The...
The rate of heat addition to an air-standard Brayton cycle is 3.4 times 109 Btu/h. The pressure ratio for the cycle is 15 and the minimum and maximum temperatures are 520°R and 3000°R, respectively. Determine (a) the thermal efficiency of the cycle. (b) the mass flow rate of air, in lb/h. (c) the net power developed by the cycle, in Btu/h.
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 =...
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 = 520°R. The isentropic efficiencies of the compressor and turbine are 83 and 87%, respectively. The compressor pressure ratio is 16 and the temperature at the turbine inlet is 2500°R. The volumetric flow rate of the air entering the compressor is 9000 ft3/min. Use an air-standard analysis. Determine all temperatures at each state. A) Determine the net power developed, in Btu/h. (Already did this part,...
the ideal air standard Brayton cycle consists of the following processes: 1-2 isentropic compression through a...
the ideal air standard Brayton cycle consists of the following processes: 1-2 isentropic compression through a pressur ratio rp =p2/p1 2-3 heat addition at constant pressure untill the pressure is p3 3-4 isentropic expansion to the initial pressure 4-1 heat rejection at constnt pressure A- show that the cycle efficiency for this cycle is B-Air enters compressor of a gas turbine at 100kpa and 250c.for a pressure ratio of 5 and a maximum temp of 8500c , determine the thermal...
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60...
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 17.5, and the maximum cycle temperature is 1950 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. Determine: (a) the net power developed, in kW. (b) the rate of heat addition in the combustor, in kW. (c) the percent thermal efficiency of the cycle.
This is problem 8-11 from El-Wakil’s Powerplant Technology book -- a combustion Brayton cycle uses 200...
This is problem 8-11 from El-Wakil’s Powerplant Technology book -- a combustion Brayton cycle uses 200 percent of theoretical air. The cycle has an inlet temperature of 500 degRankine. The compression ratios in the compressor and turbine are assumed equal to 9. One stage of intercooling and one stage of reheat are used. Assume that all rotary machines have efficiencies of 0.85. A 0.85 effective regenerator is used. Calculate the net work of the cycle and the overall efficiency, using...
Use cold-air-standard analysis with the fluid modeled as an ideal gas with R=0.287 kJ/kg-K and constant...
Use cold-air-standard analysis with the fluid modeled as an ideal gas with R=0.287 kJ/kg-K and constant k=1.4. Neglect changes in kinetic and potential energy. Consider a SSSF of air at 300 K and 100 kPa entering the compressor of a Simple Brayton Cycle Gas Turbine powerplant. The cycle pressure ratio is 40 and maximum cycle temperature is 1800 K. For compressor isentropic efficiency of 82% the compressor work input per unit mass = __ kJ/kg (enter the nearest positive integer...