Question

The pressure of a motor operating according to the seilinger cycle is 1.01x10 ^ 5 Pa...

The pressure of a motor operating according to the seilinger cycle is 1.01x10 ^ 5 Pa at the start of compression, the pressure and temperature at the end of the heat socket are 43,05x10 ^ 5 Pa and 2410 K, respectively. The temperature at the end of the expansion is 1150 K. Since the compression ratio of this engine is 11, find the average index pressure by taking the adiabatic base coefficient of 1.41.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The pressure of the 4-stroke engine operating according to the seilinger cycle at the end of...
The pressure of the 4-stroke engine operating according to the seilinger cycle at the end of the heat input is 97.45x10 ^ 5 Pa at the beginning of the heat input 600 ° C. The compression ratio of the cycle is 17.5 burst (pressure) ratio 1.7, the cutting (pre-expansion) ratio 1.6 and taking the adiobatic base value of 1.4; What is the temperature at the end of expansion?
The pressure at the end of the ist input of a 4-stroke engine operating according to...
The pressure at the end of the ist input of a 4-stroke engine operating according to the Selinger Cycle is 97.45x10 Pa, and the temperature at the start of the heat input is 600 ° C. The compression ratio of the cycle is 17.5 and the blast (pressure) ratio is 1.7. Which of the following is the temperature at the end of the expansion by taking the cut (ten expansion) ratio 1.6 and the adiabatic ús value 1.4?
An ideal Diesel cycle has a cut off ratio of 2. The temperature of the air...
An ideal Diesel cycle has a cut off ratio of 2. The temperature of the air at the beginning and at the end of the compression process are 300 K and 900 K respectively. By utilizing constant specific heats, taking the specific heat ratio, k = 1.4, Cp = 1.005 kJ/kg K and Cv = 0.718 kJ/kg K. Determine the followings: (i) The compression ratio. [5 marks] (ii) The maximum cycle temperature. [5 marks] (iii) The amount of heat transferred...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected 2) An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected. 11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure...
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are...
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are 1 bar and 47°C, respectively. The heat supplied in the cycle is 1250kJ/kg, two third of this heat is being added at constant volume and the remaining heat is added at constant pressure. If the compression ratio is 16, determine 1)the maximum temperature in the cycle. 2)the thermal efficiency of the cycle. 3)the mean effective pressure.
At the beginning of the compression process of an air-standard Diesel cycle operating with a compression...
At the beginning of the compression process of an air-standard Diesel cycle operating with a compression ratio of 20, the temperature is 350 K and the pressure is 0.15 MPa. The cutoff ratio for the cycle is 1.5. Determine (a) the temperature and pressure at the end of each process of the cycle, (b) the thermal efficiency, (c) the mean effective pressure, in MPa.
1. The compression ratio of an air powered diesel cycle is A = 18 and the...
1. The compression ratio of an air powered diesel cycle is A = 18 and the cutting ratio is B = 2.2. The pressure of the air at the beginning of the compression process is C = 94 kPa and the temperature is D = 32 ° C. Considering that the specific temperatures change with temperature (using the air standard, not the cold air standard only, that is, using the relative specific volumes from the table) and accepting the gas...
1. An engine operating at a hot-air standard (k=1.35) Dual Combustion Cycle handles air at 100kPa,...
1. An engine operating at a hot-air standard (k=1.35) Dual Combustion Cycle handles air at 100kPa, 34.5°C, & 0.3531m^3 during the beginning of the isentropic compression process. The engine has a percent clearance of 6.25% and an expansion ratio of 1.5 during the isentropic expansion process. It receives 165 kJ of heat during the constant volume process. What is the a.) Temperatures at different points of the cycle °C? b.) Net Work kJ? And c.) Mean effective pressure in kPa?
Consider a cold air-standard Diesel cycle. At the beginning of compression, 102 kPa, and 300 K....
Consider a cold air-standard Diesel cycle. At the beginning of compression, 102 kPa, and 300 K. The mass of air is 0.120 kg, the compression ratio is 16, and the cut-off ratio is 2.0 For a cold air-standard analysis use the following values: cp = 1.005 kJ/kgK, cv = 0.718 kJ/kgK, k=1.40, M=28.97 kg/kmol. Determine the following : (a) pressure at end of compression stroke, in kPa (b) temperature at end of compression stroke, in K (c) maximum temperature in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT