Question

A diesel cycle has a compression ratio of 18 and an intake cutoff ratio of 3....

A diesel cycle has a compression ratio of 18 and an intake cutoff ratio of 3. At the beginning of the compression process, the working fluid is at 100 Kpa and 20 degrees C. assuming variation of the specific heats find the temperature and pressure of the air in each state, the heats of input and output per unit mass and thermal efficiency.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2....
An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process, air is at 95 kPa and 27°C. Accounting for the variation of specific heats with temperature, determine the total irreversibility (or lost work). Assume a source temperature is 2000 K and a sink temperature is 300 K. Show solution step by step.
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected 2) An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected. 11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure...
1. The compression ratio of an air powered diesel cycle is A = 18 and the...
1. The compression ratio of an air powered diesel cycle is A = 18 and the cutting ratio is B = 2.2. The pressure of the air at the beginning of the compression process is C = 94 kPa and the temperature is D = 32 ° C. Considering that the specific temperatures change with temperature (using the air standard, not the cold air standard only, that is, using the relative specific volumes from the table) and accepting the gas...
At the beginning of the compression process of an air-standard Diesel cycle operating with a compression...
At the beginning of the compression process of an air-standard Diesel cycle operating with a compression ratio of 20, the temperature is 350 K and the pressure is 0.15 MPa. The cutoff ratio for the cycle is 1.5. Determine (a) the temperature and pressure at the end of each process of the cycle, (b) the thermal efficiency, (c) the mean effective pressure, in MPa.
An ideal Diesel cycle has a cut off ratio of 2. The temperature of the air...
An ideal Diesel cycle has a cut off ratio of 2. The temperature of the air at the beginning and at the end of the compression process are 300 K and 900 K respectively. By utilizing constant specific heats, taking the specific heat ratio, k = 1.4, Cp = 1.005 kJ/kg K and Cv = 0.718 kJ/kg K. Determine the followings: (i) The compression ratio. [5 marks] (ii) The maximum cycle temperature. [5 marks] (iii) The amount of heat transferred...
A diesel engine operates at 3000 rpm on a standard Diesel cycle has a compression ratio...
A diesel engine operates at 3000 rpm on a standard Diesel cycle has a compression ratio of 14. The state of air at the beginning of the compression process is 98 kPa and 24 ?C. The maximum temperature in the cycle is not exceed 1850 ?C. Assume diesel fuel has a heating value of 45 MJ/kg. Use the PG model. a) Determine the thermal efficiency. b) Determine the specific fuel consumption. (kg/kJ) c) What-if Scenario: What would the thermal efficiency...
The compression ratio of an air-standard Diesel cycle is 17 and the conditions at the beginning...
The compression ratio of an air-standard Diesel cycle is 17 and the conditions at the beginning of compression are p1 = 14.0 lbf/in.2, V1 = 2 ft3, and T1 = 520°R. The maximum temperature in the cycle is 4000°R. Calculate (a) the net work for the cycle, in Btu. Btu (b) the thermal efficiency. % (c) the mean effective pressure, in lbf/in.2 lbf/in.2 (d) the cutoff ratio.
A diesel cycle operates with a compression ratio of 16:1. The conditions at the beginning of...
A diesel cycle operates with a compression ratio of 16:1. The conditions at the beginning of compression are T= 90 F , p= 14.6 psia. The maximum volume in the cylinder is 85 in^3. The maximum temperature in the cycle is 1740 degrees R. The cycle can be considered ideal, except, that the compression stroke is only polytropic with n = 1.31. A) what is the mass of (air + fuel) in the cylinder? B) what is the maximum pressure...
An ideal Otto engine has a compression ratio of 10 and uses air as the working...
An ideal Otto engine has a compression ratio of 10 and uses air as the working fluid. The state of air at the beginning of the compression process is 100 kPa and 27 0C. The maximum temperature in the cycle is 2100K. (R=0.287 for air) (using variable specific heat) Draw the P-v diagram of the Otto cycle Determine the specific internal energies at the beginning and the end of the compression, Determine the specific internal energies before and after the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT