Question

Suppose that f is a differentiable function and define g(x)=e^(2*f(x)+5x). Suppose that f(-2) = 1 and...

Suppose that f is a differentiable function and define g(x)=e^(2*f(x)+5x). Suppose that f(-2) = 1 and f ' (-2) = 2. Find g ' (-2).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
suppose and are functions that are differentiable at x=0 and that f(1)=2, f'(1)=-1, g(1)=-2, and g'(1)=3....
suppose and are functions that are differentiable at x=0 and that f(1)=2, f'(1)=-1, g(1)=-2, and g'(1)=3. Find the value of h'(1). 1) h(x)=f(x) g(x) 2) h(x)=xf(x) / x+g(x)
1. find all vertical asymptotes of function f(x) = In((e^2In(x))-5x+6) 2. find all x intercepts of...
1. find all vertical asymptotes of function f(x) = In((e^2In(x))-5x+6) 2. find all x intercepts of the function g(x)=In((e^2In(x))-3x+5)-In(2)-In(3/2)
Suppose f is a differentiable function of x and y, and g(u, v) = f(eu +...
Suppose f is a differentiable function of x and y, and g(u, v) = f(eu + sin(v), eu + cos(v)). Use the table of values to calculate gu(0, 0) and gv(0, 0).      f     g     fx     fy     (0, 0)   0 5 1 4   (1, 2)   5 0 6 3 gu(0, 0) = gv(0, 0) =
If f is a differentiable function such that f′(x) = (x^2− 16)*g(x), where g(x)>0 for all...
If f is a differentiable function such that f′(x) = (x^2− 16)*g(x), where g(x)>0 for all x, at which value(s) of x does f have a local maximum? 1. At both x=-4,4 2. Only at x=-16 3. Only at x=4 4. At both x=-16,16 5. Only at x=-4 6. Only at x=16
Consider the function g(x) = |3x + 4|. (a) Is the function differentiable at x =...
Consider the function g(x) = |3x + 4|. (a) Is the function differentiable at x = 10? Find out using ARCs. If it is not differentiable there, you do not have to do anything else. If it is differentiable, write down the equation of the tangent line thru (10, g(10)). (b) Graph the function. Can you spot a point “a” such that the tangent line through (a, f(a)) does not exist? If yes, show using ARCS that g(x) is not...
1. Let f(x)=−x^2+13x+4 a.Find the derivative f '(x) b. Find f '(−3) 2. Let f(x)=2x^2−4x+7/5x^2+5x−9, evaluate...
1. Let f(x)=−x^2+13x+4 a.Find the derivative f '(x) b. Find f '(−3) 2. Let f(x)=2x^2−4x+7/5x^2+5x−9, evaluate f '(x) at x=3 rounded to 2 decimal places. f '(3)= 3. Let f(x)=(x^3+4x+2)(160−5x) find f ′(x). f '(x)= 4. Find the derivative of the function f(x)=√x−5/x^4 f '(x)= 5. Find the derivative of the function f(x)=2x−5/3x−3 f '(x)= 6. Find the derivative of the function g(x)=(x^4−5x^2+5x+4)(x^3−4x^2−1). You do not have to simplify your answer. g '(x)= 7. Let f(x)=(−x^2+x+3)^5 a. Find the derivative....
Let f be continuously differentiable function on the Reals with the following characteristics: - f(x) is...
Let f be continuously differentiable function on the Reals with the following characteristics: - f(x) is increasing from intervals (0,2) and (4,5) and decreasing everywhere else - f(x) > -1 on the interval (1,3) and f(x) < -1 everywhere else Suppose g(x) = 2f(x) + (f(x))^2. On which interval(s) is g(x) increasing?
Suppose that f(x)=x+6/x−1 is differentiable and has an inverse for x>1 and f(2)=8. Find (f−1)′(8).
Suppose that f(x)=x+6/x−1 is differentiable and has an inverse for x>1 and f(2)=8. Find (f−1)′(8).
suppose f is a differentiable function on interval (a,b) with f'(x) not equal to 1. show...
suppose f is a differentiable function on interval (a,b) with f'(x) not equal to 1. show that there exists at most one point c in the interval (a,b) such that f(c)=c
Prove that the function f(x) = |x| is not differentiable at zero, and show that the...
Prove that the function f(x) = |x| is not differentiable at zero, and show that the function g(x) = |x|*x is differentiable at zero.