Question

1. (1 point) Calculate κ(t)κ(t) when r(t)=〈3t^(−1),5,1t〉 κ(t)= 2. (1 point) Find the arclength of the...

1.

(1 point)

Calculate κ(t)κ(t) when

r(t)=〈3t^(−1),5,1t〉

κ(t)=

2.

(1 point)
Find the arclength of the curve r(t)=〈−3sint,6t,−3cost〉, −9≤t≤9

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the unit tangent vector T(t) and the curvature κ(t) for the curve r(t) = <6t^3...
Find the unit tangent vector T(t) and the curvature κ(t) for the curve r(t) = <6t^3 , t, −3t^2 >.
Find the curvature of r(t) at the point (3, 1, 1). r(t) = <3t, t^2 ,...
Find the curvature of r(t) at the point (3, 1, 1). r(t) = <3t, t^2 , t^3> k=
17.)Find the curvature of r(t) at the point (1, 0, 0). r(t) = et cos(t), et...
17.)Find the curvature of r(t) at the point (1, 0, 0). r(t) = et cos(t), et sin(t), 3t κ =
1. (1 point) For the curve given by r(t)=〈−7t,−4t,1+7t2〉r(t)=〈−7t,−4t,1+7t2〉, Find the derivative r′(t)=〈r′(t)=〈, , , 〉...
1. (1 point) For the curve given by r(t)=〈−7t,−4t,1+7t2〉r(t)=〈−7t,−4t,1+7t2〉, Find the derivative r′(t)=〈r′(t)=〈, , , 〉 Find the second derivative r″(t)=〈r″(t)=〈 Find the curvature at t=1t=1 κ(1)=κ(1)= 2. (1 point) Find the distance from the point (-1, -5, 3) to the plane −4x+4y+0z=−3.
1) Find the curvature of the curve r(t)= 〈4+3t,5−5t,4+5t〉 the point t=5. 2) Find a plane...
1) Find the curvature of the curve r(t)= 〈4+3t,5−5t,4+5t〉 the point t=5. 2) Find a plane through the points (2,-3,8), (-3,-3,-6), (-6,3,-7)
Find the curvature κ(t)κ(t) of the curve r(t)=(−5sint)i+(−5sint)j+(−4cost)k
Find the curvature κ(t)κ(t) of the curve r(t)=(−5sint)i+(−5sint)j+(−4cost)k
Find T, N, and κ for the plane curve r(t) = (7t+2) i + (5 -...
Find T, N, and κ for the plane curve r(t) = (7t+2) i + (5 - t^7) j
Determine the length of the curve r(t) = 4i + 2t^2 j + 1/3t^3 k from...
Determine the length of the curve r(t) = 4i + 2t^2 j + 1/3t^3 k from the point (4, 0, 0) to the point (4, 18, 9)
1. (1 point) Find the distance the point P(1, -6, 7), is to the plane through...
1. (1 point) Find the distance the point P(1, -6, 7), is to the plane through the three points Q(-1, -1, 5), R(-5, 2, 6), and S(3, -4, 8). 2. (1 point) For the curve given by r(t)=〈−7t,−4t,1+7t2〉r(t)=〈−7t,−4t,1+7t2〉, Find the derivative r′(t)=〈r′(t)=〈  ,  ,  〉〉 Find the second derivative r″(t)=〈r″(t)=〈  ,  ,  〉〉 Find the curvature at t=1t=1 κ(1)=κ(1)=
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3...
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3 + 1 2 t 2 i (a) Find r 0 (t) (b) Find the unit tangent vector to the space curve of r(t) at t = 3. (c) Find the vector equation of the tangent line to the curve at t = 3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT