Question

In the system AX=b, where A is m x n matrix and rank of A is...

In the system AX=b, where A is m x n matrix and rank of A is m, you are given n vectors and among them p vectors are linearly dependent (p > m).

Please write down the procedure to reduce the number of dependent vector by 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A linear system of equations Ax=b is known, where A is a matrix of m by...
A linear system of equations Ax=b is known, where A is a matrix of m by n size, and the column vectors of A are linearly independent of each other. Please answer the following questions based on this assumption, please explain it, thank you~. (1) To give an example, Ax=b is the only solution. (2) According to the previous question, what kind of inference can be made to the size of A at this time? (What is the size of...
Suppose we are given a system Ax = b, with A an n × m matrix....
Suppose we are given a system Ax = b, with A an n × m matrix. What can you say about the solution set of the system in the following cases? Provide a brief explanation. (i) rank(A) < n (ii) rank(A) = n (iii) rank(A) < m (iv) rank(A) = m
4. Suppose that we have a linear system given in matrix form as Ax = b,...
4. Suppose that we have a linear system given in matrix form as Ax = b, where A is an m×n matrix, b is an m×1 column vector, and x is an n×1 column vector. Suppose also that the n × 1 vector u is a solution to this linear system. Answer parts a. and b. below. a. Suppose that the n × 1 vector h is a solution to the homogeneous linear system Ax=0. Showthenthatthevectory=u+hisasolutiontoAx=b. b. Now, suppose that...
Prove the following: Given k x m matrix A, m x n matrix B. Then rank(A)=m...
Prove the following: Given k x m matrix A, m x n matrix B. Then rank(A)=m --> rank(AB)=rank(B)
Let A be an nxn matrix. Show that if Rank(A) = n, then Ax = b...
Let A be an nxn matrix. Show that if Rank(A) = n, then Ax = b has a unique solution for any nx1 matrix b.
Given a matrix system AX = B as below, where A is a 4 x 4...
Given a matrix system AX = B as below, where A is a 4 x 4 matrix as given below A: 2          1          0          0 1          2          1          0 0          2          4          1 0          0          1          3 B: 0         -1 3 -1 Solve for all 4 X values using TDMA algorithm First identify the a, d, c and b values for each row, and then find P’s and Q’s and finally determine X’s.
Let A be an m×n matrix, x a vector in Rn, and b a vector in...
Let A be an m×n matrix, x a vector in Rn, and b a vector in Rm. Show that if x1 in Rn is a solution to Ax=b and x2 is a solution to Ax=⃗0, then x1 +x2 is a solution to Ax=b.
Find the fundamental matrix solution for the system x′ = Ax where matrix A is given....
Find the fundamental matrix solution for the system x′ = Ax where matrix A is given. If an initial condition is provided, find the solution of the initial value problem using the principal matrix. A= [ 4 -13 ; 2 -6 ]. , x(o) = [ 2 ; 0 ]
Let A,B be a m by n matrix, Prove that |rank(A)-rank(B)|<=rank(A-B)
Let A,B be a m by n matrix, Prove that |rank(A)-rank(B)|<=rank(A-B)
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix...
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix theorem below and show that all 3 statements are true or false. Make sure to clearly explain and justify your work. A= -1 , 7, 9 7 , 7, 10 -3, -6, -4 The equation A has only the trivial solution. 5. The columns of A form a linearly independent set. 6. The linear transformation x → Ax is one-to-one. 7. The equation Ax...