Question

For a limited time interval, the current through a 9.71 microhenries (or, equivalently, 9.71×10^-6 henries) inductor...

For a limited time interval, the current through a 9.71 microhenries (or, equivalently, 9.71×10^-6 henries) inductor is modelled by

i(t)==(0.489t)^1/3 amperes,

where t is the time in seconds. Recall that, in this case, the voltage function is given by v(t)=L×i'(t), where the voltage, inductance, and current is given in volts, henries, and amperes, respectively.

(a) Find the voltage function.
  

(b) Find the voltage in microvolts at 1.671.67 seconds.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.3-kΩ resistor and 26.3-mH inductor are connected in series to a Vrms = 120 V...
A 1.3-kΩ resistor and 26.3-mH inductor are connected in series to a Vrms = 120 V AC power source oscillating at a frequency of f = 60 Hz. The voltage as a function of time is given by V = V0cos(ωt), where V0 is the amplitude, ω is the angular frequency. Part (a) What is the amplitude of the source voltage, in volts? Part (b) Enter an expression for the impedance of the circuit in terms of R, L, f,...
Please can you assist with the below, a) If the vertical position of the UAV from...
Please can you assist with the below, a) If the vertical position of the UAV from the launch point is modelled by the distance (S) equation S=136t3-3t +5, calculate the speed and acceleration of the UAV and identify the time when the vehicle turns in its path and whether the turning point is at a maximum or minimum height on its flight path. Explain your methodology in reaching your conclusions clearly. b) If the vehicle’s distance is modelled by the...
1)The current in a 60.0-mH inductor changes with time as i = 4.00t2 − 7.00t, where...
1)The current in a 60.0-mH inductor changes with time as i = 4.00t2 − 7.00t, where i is in amperes and t is in seconds. (a) Find the magnitude of the induced emf at t = 1.00 s. (b) Find the magnitude of the induced emf at t = 4.00 s. (c) At what time is the emf zero? 2)A 499-turn solenoid has a radius of 7.10 mm and an overall length of 15.4 cm. (a) What is its inductance?...
The current in a 70.0-mH inductor changes with time as i = 4.00t2 ? 8.00t, where...
The current in a 70.0-mH inductor changes with time as i = 4.00t2 ? 8.00t, where i is in amperes and t is in seconds. (a) Find the magnitude of the induced emf at t = 1.00 s. in mV (b) Find the magnitude of the induced emf at t = 4.00 s. in mV (c) At what time is the emf zero? in s
2. You want to turn on the current through an inductor (inductance = L) in a...
2. You want to turn on the current through an inductor (inductance = L) in a controlled manner, so you place it in series with a resistor R = 2200 Ω, a switch, and a dc voltage source V0 = 240 V. After closing the switch, you find that the current through the coil builds up to its steady-state value with a time constant τ. You are pleased with the current’s steady-state value, but want τ to be half as...
2. The current in a 150 microH inductor is known to be i(L) = 25te^(-500t) A...
2. The current in a 150 microH inductor is known to be i(L) = 25te^(-500t) A for t >= 0, where t is in seconds. Assume the passive sign convention. a) Find the voltage across the inductor for t > 0. (Assume the passive sign convention). b) Find the power (in microwatts) at the terminals of the inductor when t = 200 ms c) Is the Inductor absorbing or delivering power at 200 ms? d) Find the energy (in microjoules)...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source of amplitude 12 V and frequency 120 Hz. Part (h) With a source voltage of Vsource = V0 cos(2πft), what is the instantaneous voltage, in volts, across the capacitor at time t = 2.25 s? Part (i) What is the amplitude of the voltage drop across the inductor, in volts? Part (j) With a source voltage of Vsource = V0cos(2πft), what is the instantaneous...
2. A resistor R and an inductor L are connected in parallel to an AC source...
2. A resistor R and an inductor L are connected in parallel to an AC source providing a voltage v(t) = V sin(ωt). (a) Draw a phasor diagram showing all the relevant variables of this circuit. You should support your diagram by using Kirchhoff’s rules and what you know about inductors to get full credit. Find the peak value of the total current in terms of V, R, L, and ω. (b) At an angular frequency, ω0 = 1.0 ×...
A capacitor C = 6 μF is connected in series with an inductor L = 135...
A capacitor C = 6 μF is connected in series with an inductor L = 135 mH and a battery V = 12 volts at t < 0. At t = 0, the battery is disconnected. a) What is the frequency of oscillations (ω& f) of this LC circuit? b) How many seconds will it take for the energy of the capacitor to be 3 times larger than the energy of the inductor? c) At 3 seconds, what is VL,...
A resistor R = 4 ohms, a capacitor C = 1F and an inductor L =...
A resistor R = 4 ohms, a capacitor C = 1F and an inductor L = 4H are connected in series to an alternating current voltage source V (t) = 100cos(t) Volts. Determine the charge on the capacitor and the current on the circuit at the time, if originally the capacitor is discharged, and the current is 6A.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT