Question

a right circural come is circumscribed over a sphere with radius of 10”. find the dimensions...

a right circural come is circumscribed over a sphere with radius of 10”. find the dimensions of the smallest such cone

Homework Answers

Answer #1

Here, the right circular cone is circumscribed over a sphere with radious of 10".

Applying Pythagorus theorem we get, 10/(h-10) =

i.e.,

i.e.,

Now, volume of the cone is : V =

i.e., V =

Now,

i.e.,

i.e.,

i.e., h(h-40) = 0

i.e., h = 0, 40

Here h is greater then the radious of the sphere. Then, h can't be 0.

Therefore, h = 40.

And,

i.e.,

i.e.,

Hence, the height and radious of base are 40" and .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the dimensions of the right circular cone of maximum volume having a slant height of...
Find the dimensions of the right circular cone of maximum volume having a slant height of a=20 ft. (Use symbolic notation and fractions where needed.) radius = ? ft height = ? ft
Please find the dimensions of the largest cylinder that can be inscribed in a sphere with...
Please find the dimensions of the largest cylinder that can be inscribed in a sphere with radius equal to rr. Use optimization
A tank in shape of an inverted right circular cone has height 10 m and radius...
A tank in shape of an inverted right circular cone has height 10 m and radius 10 m. it is filled with 7 m of hot chocolate. Find the work required to empty the tank by bumping the hot chocolate over the top. density of chocolate equal 1510kg/m^3
A cylinder is inscribed in a right circular cone of height 2.5 and radius (at the...
A cylinder is inscribed in a right circular cone of height 2.5 and radius (at the base) equal to 6.5. What are the dimensions of such a cylinder which has maximum volume? Asking for both radius and height.
Find the surface area of upper part of the sphere of radius a, x2 + y2...
Find the surface area of upper part of the sphere of radius a, x2 + y2 + z2 = a2, cut by the cone z = sqrt(x2 + y2). Show the integral that corresponds to the surface area using spherical coordinates.
Find the volume of the largest right circular cylinder that can be inscribed in a sphere...
Find the volume of the largest right circular cylinder that can be inscribed in a sphere of radius 4
10. A shell of solid metal sphere of outer radius Ro = 2m and inner radius...
10. A shell of solid metal sphere of outer radius Ro = 2m and inner radius of R1 = 1m has a charge of Q1 = 4C placed on it. After the charge is placed on the sphere, a charge of Q2 = 6C is then placed at the center of the sphere. Find the electric field everywhere in the sphere. What are the charges on the inside of the sphere, and outside the sphere.
2. A cylinder is inscribed in a right-circular cone of altitude 12cm, and a base with...
2. A cylinder is inscribed in a right-circular cone of altitude 12cm, and a base with radius of 4cm. Find the dimensions of the cylinder that will make the total surface area a maximum.
Cones come in a few varieties, and we will consider the right circular cone. A cone...
Cones come in a few varieties, and we will consider the right circular cone. A cone with a circular base is a circular cone. A circular cone whose axis is perpendicular to the base is a right circular cone. 1.Create a new class called .Include a Javadoc comment at the top of the class. The Javadoc comment should contain: i.The name of the class and a (very) short description ii.An @author tag followed by your name iii.An @version tag followed...
A hollow sphere with radius .5 M rolls down a 10 M long ramp angled at...
A hollow sphere with radius .5 M rolls down a 10 M long ramp angled at 30 degrees. a) Find the speed of the center of the sphere at the bottom of the ramp. b) Find the time it takes for the sphere to make 10 complete rotations once it's at the bottom of the ramp. c) After it makes the 10 rotations, the radius of the sphere doubles due to internal forces within the sphere. Now how long does...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT