Question

An object is moving in the plane according to the parametric equations x(t)=8sin(π t) y(t)=4cos(π t)...

An object is moving in the plane according to the parametric equations

x(t)=8sin(π t)

y(t)=4cos(π t)


for 0 ≤ t ≤ 1

,where time units are seconds and units on the coordinate axes are feet. The path traveled by the object is a portion of an ellipse in the first quadrant, as pictured. The location of the object at time t will be denoted by P(t)=(x(t),y(t)). A laser beam projects from the object in a direction perpendicular to the tangent line along what is called a normal line. If t≠ 1/2, the normal line will cross the x-axis at a point (m(t), 0). .

a) When 0 ≤ t ≤ 1, the equation of the normal line to the path is

b) When t≠ 1/2, the formula for the coordinate m(t)=

c) lim t→1/2 m(t)=

Homework Answers

Answer #1

Please UPVOTE if this answer helps you understand better.

Solution:-

Please UPVOTE if this answer helps you understand better.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y =...
Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y = 3sin(t). Find the expression which represents the tangent of line C. Write the equation of the line that is tangent to C at t = π/ 3.
On the parametric curve (x(t), y(t)) = (t − t^2 , t^2 + 3t) pictured below,...
On the parametric curve (x(t), y(t)) = (t − t^2 , t^2 + 3t) pictured below, determine the (x, y)-coordinates of the marked point where the tangent line is horizontal.
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3...
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3 sin(t), t ∈ [0, 2π) Part a: (2 points) Give an equation relating x and y that represents the curve. Part b: (4 points) Find the slope of the tangent line to the curve when t = π 6 . Part c: (4 points) State the points (x, y) where the tangent line is horizontal
For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π) Part...
For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π) Part a: Give an equation relating x and y that represents the curve. Part b: Find the slope of the tangent line to the curve when t = π/6 . Part c: State the points (x,y) where the tangent line is horizontal.
Consider the parametric curve given by the equations: x = tsin(t) and y = t cos(t)...
Consider the parametric curve given by the equations: x = tsin(t) and y = t cos(t) for 0 ≤ t ≤ 1 (a) Find the slope of a tangent line to this curve when t = 1. (b) Find the arclength of this curve
Determine the tangent line at point t = π/3 of the curve defined by the parametric...
Determine the tangent line at point t = π/3 of the curve defined by the parametric equations: X = 2 sin (t) Y = 5 cos (t)
The curve given by the parametric equations of x = 1-sint, y = 1-cos t ,...
The curve given by the parametric equations of x = 1-sint, y = 1-cos t , Calculate the volume of the rotational object formed by rotating the x axis use of the parts between t = 0 and t = π / 2. Please solve this question carefully , clear and step by step.I will give you a feedback and thumb up if it is correct.
Consider the parametric equations below. x = t sin(t),    y = t cos(t),    0 ≤ t ≤ π/3...
Consider the parametric equations below. x = t sin(t),    y = t cos(t),    0 ≤ t ≤ π/3 Set up an integral that represents the area of the surface obtained by rotating the given curve about the x-axis. Use your calculator to find the surface area correct to four decimal places
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y =...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y = g(θ) for this curve. b) Find the slope of the line tangent to this curve when θ=π. 6) a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the...
Find parametric equations for the rectangular equation y = e^x + 9 using the parameter t...
Find parametric equations for the rectangular equation y = e^x + 9 using the parameter t = dy/dx . Verify that at t = 1, the point on the graph has a tangent line with slope 1
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT