Question

Estimate the minimum number of subintervals needed to approximate the integral integral subscript 0 superscript 4...

Estimate the minimum number of subintervals needed to approximate the integral integral subscript 0 superscript 4 open parentheses 7 x squared minus 4 x close parentheses d x with an error of magnitude less than 10-4 using Simpson's Rule. Error Estimates in the Simpson's Rule: If f(4) is continuous and M is any upper bound for the values of |f(4)| on [a, b], then the error ES in the Simpson's Rule approximation of the integral of f from a to b for n steps satisfies the inequality open vertical bar E subscript S close vertical bar less or equal than fraction numerator M open parentheses b minus a close parentheses to the power of 5 over denominator 180 n to the power of 4 end fraction.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Estimate the minimum number of subintervals to approximate the value of Integral from negative 2 to...
Estimate the minimum number of subintervals to approximate the value of Integral from negative 2 to 2 left parenthesis 4 x squared plus 6 right parenthesis dx with an error of magnitude less than 4 times 10 Superscript negative 4 using a. the error estimate formula for the Trapezoidal Rule. b. the error estimate formula for​ Simpson's Rule.
Let f be a continuous odd function on straight real numbers. If integral subscript negative 5...
Let f be a continuous odd function on straight real numbers. If integral subscript negative 5 end subscript superscript 0 straight f open parentheses straight x close parentheses dx equals 8 and integral subscript 5 superscript 7 f open parentheses x close parentheses d x equals 10 then integral subscript 0 superscript 7 f open parentheses x close parentheses d x equals Select one: a. 18 b. 1 c. 2 d. 0
(a) Use the Trapezoidal rule with 4 equal partitions to approximate ? integral (from -1 to...
(a) Use the Trapezoidal rule with 4 equal partitions to approximate ? integral (from -1 to 1) (x^2 +1)dx via the formula Tn =(∆x/2)(y0+2y1+...+2yn−1+yn )with n=4, and ∆x=(b−a)/n (b) Compare the actual error, found by direct integration minus the approximation, with the known error bound for the Trapezoidal rule |ETn| ≤ (f′′(c)/12n^2) (b−a)^3, 12n2 where c is a point at which the absolute value of the second derivative is maximized.
A student would like to assess whether the mean amount of money spent on books during...
A student would like to assess whether the mean amount of money spent on books during the 2016-2017 school year is equal for all students in each of the four class ranks at California University (1: Freshmen, 2: Sophomores, 3: Juniors, 4: Seniors). To conduct this study, the student took a large random sample of students at California University and recorded for each student the total amount of money spent on books during the 2016-2017 school year and the class...