Question

Compute ∬S (x)(y^2)(z) dS where S is the part of the cone with parameterization r(u,v)= <ucosv,usinv,u>...

Compute ∬S (x)(y^2)(z) dS where S is the part of the cone with parameterization r(u,v)= <ucosv,usinv,u> , 0≤ u ≤ 1, 0≤ v ≤ pi/2 . Also state what the parameter space is.

Homework Answers

Answer #2


answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate the surface integral. S (x + y + z) dS, S is the parallelogram with...
Evaluate the surface integral. S (x + y + z) dS, S is the parallelogram with parametric equations x = u + v, y = u − v, z = 1 + 2u + v, 0 ≤ u ≤ 7, 0 ≤ v ≤ 4.
U = {q, r, s, t, u, v, w, x, y, z}     A = {q,...
U = {q, r, s, t, u, v, w, x, y, z}     A = {q, s, u, w, y}     B = {q, s, y, z}     C = {v, w, x, y, z}. List the elements in A - B.
Use Stokes’ theorem to find Z Z S (∇ × F) · dS where F =...
Use Stokes’ theorem to find Z Z S (∇ × F) · dS where F = x 2 i + 2xzj + xyk and S is part of the cone z = p x 2 + y 2 that lies below the plane z = 2.
Evaluate the surface integral (x+y+z)dS when S is part of the half-cylinder x^2 +z^2=1, z≥0, that...
Evaluate the surface integral (x+y+z)dS when S is part of the half-cylinder x^2 +z^2=1, z≥0, that lies between the planes y=0 and y=2
let x=u+v. y=v find dS, the a vector, and ds^2 for the u,v coordinate system and...
let x=u+v. y=v find dS, the a vector, and ds^2 for the u,v coordinate system and show that it is not an orthogonal system
Compute the surface integral of F(x, y, z) = (y,z,x) over the surface S, where S...
Compute the surface integral of F(x, y, z) = (y,z,x) over the surface S, where S is the portion of the cone x = sqrt(y^2+z^2) (orientation is in the negative x direction) between the planes x = 0, x = 5, and above the xy-plane. PLEASE EXPLAIN
Let s = f(x; y; z) and x = x(u; v; w); y = y(u; v;...
Let s = f(x; y; z) and x = x(u; v; w); y = y(u; v; w); z = z(u; v; w). To calculate ∂s ∂u (u = 1, v = 2, w = 3), which of the following pieces of information do you not need? I. f(1, 2, 3) = 5 II. f(7, 8, 9) = 6 III. x(1, 2, 3) = 7 IV. y(1, 2, 3) = 8 V. z(1, 2, 3) = 9 VI. fx(1, 2, 3)...
Evaluate the following. f(x, y) = x + y S: r(u, v) = 5 cos(u) i...
Evaluate the following. f(x, y) = x + y S: r(u, v) = 5 cos(u) i + 5 sin(u) j + v k, 0 ≤ u ≤ π/2, 0 ≤ v ≤ 3
Evaluate S (9x + y − 2z) dS. S: z = x + y/2 ,    0 ≤...
Evaluate S (9x + y − 2z) dS. S: z = x + y/2 ,    0 ≤ x ≤ 4,    0 ≤ y ≤ 3
Use a change of variables to evaluate Z Z R (y − x) dA, where R...
Use a change of variables to evaluate Z Z R (y − x) dA, where R is the region bounded by the lines y = 2x, y = 3x, y = x + 1, and y = x + 2. Use the change of variables u = y x and v = y − x.