Question

Calculate the arc length of the indicated portion of the curve r(t). r(t) = 6√2 t^((3⁄2)...

Calculate the arc length of the indicated portion of the curve r(t).

r(t) = 6√2 t^((3⁄2) )i + (9t sin t)j + (9t cos t)k ; -3 ≤ t ≤ 7

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. Find the arc length of the curve r(t) = <t^2 cos(t), t^2 sin(t)> from the...
. Find the arc length of the curve r(t) = <t^2 cos(t), t^2 sin(t)> from the point (0, 0) to (−π^2 , 0).
1. a) Get the arc length of the curve. r(t)= (cos(t) + tsin(t), sin(t) - tcos(t),...
1. a) Get the arc length of the curve. r(t)= (cos(t) + tsin(t), sin(t) - tcos(t), √3/2 t^2) in the Interval 1 ≤ t ≤ 4 b) Get the curvature of r(t) = (e^2t sen(t), e^2t, e^2t cos (t))
Write the curve given by r(t)=((3/2)t)i+(t^3/2)j as a function r(s) parameterized by the arc length s...
Write the curve given by r(t)=((3/2)t)i+(t^3/2)j as a function r(s) parameterized by the arc length s from the point where t=0. Write your answer using standard unit vector notation.
Find an arc length parametrization of r(t) = (et sin(t), et cos(t), 10et )
Find an arc length parametrization of r(t) = (et sin(t), et cos(t), 10et )
Parameterize the curve using the arc-length parameter s, at the point at which t=0t=0 for r(t)=e^tsint...
Parameterize the curve using the arc-length parameter s, at the point at which t=0t=0 for r(t)=e^tsint i+e^tcost j.
Find the arc length of the curve r(t) = i + 3t2j + t3k on the...
Find the arc length of the curve r(t) = i + 3t2j + t3k on the interval [0,√45]. Hint: Use u-substitution to integrate.
Find the length of the curve 1) x=2sin t+2t, y=2cos t, 0≤t≤pi 2) x=6 cos t,...
Find the length of the curve 1) x=2sin t+2t, y=2cos t, 0≤t≤pi 2) x=6 cos t, y=6 sin t, 0≤t≤pi 3) x=7sin t- 7t cos t, y=7cos t+ 7 t sin t, 0≤t≤pi/4
Consider the curve r(t) = cost(t)i + sin(t)j + (2/3)t2/3k Find: a. the length of the...
Consider the curve r(t) = cost(t)i + sin(t)j + (2/3)t2/3k Find: a. the length of the curve from t = 0 to t = 2pi. b. the equation of the tangent line at the point t = 0. c. the speed of the point moving along the curve at the point t = 2pi
18. Find aT at time t=2 for the space curve r(t)= (9t-1)i + t^2 j -8tk
18. Find aT at time t=2 for the space curve r(t)= (9t-1)i + t^2 j -8tk
Find, for 0 ≤ x ≤ π, the arc-length of the segment of the curve R(t)...
Find, for 0 ≤ x ≤ π, the arc-length of the segment of the curve R(t) = ( 2cost − cos2t, 2sint − sin2t ) corresponding to 0 ≤ t ≤ x.