Question

Q. Suppose F: V --> U is a lienar transformation and k is a non-zero scalar....

Q. Suppose F: V --> U is a lienar transformation and k is a non-zero scalar. Prove that maps F and kF have the same kernel and the same image.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let T:V→W be a linear transformation and U be a subspace of V. Let T(U)T(U) denote...
Let T:V→W be a linear transformation and U be a subspace of V. Let T(U)T(U) denote the image of U under T (i.e., T(U)={T(u⃗ ):u⃗ ∈U}). Prove that T(U) is a subspace of W
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose...
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose that T is a linear transformation from V to itself and T(u) = u + v, T(v) = u, T(w) = v. 1. Find the matrix of T relative to the ordered basis B. 2. A typical element of V looks like au + bv + cw, where a, b and c are scalars. Find T(au + bv + cw). Now that you know...
Suppose that V is a vector space with basis {u, v, w}. Suppose that T is...
Suppose that V is a vector space with basis {u, v, w}. Suppose that T is a linear transformation from V to W and suppose also that {T(u), T(v), T(w)} is a basis for W. Prove from the definitions that T is both 1-1 and onto.
please answer all of them a. Suppose u and v are non-zero, parallel vectors. Which of...
please answer all of them a. Suppose u and v are non-zero, parallel vectors. Which of the following could not possibly be true? a) u • v = |u | |v| b) u + v = 0 c) u × v = |u|2 d) |u| + |v| = 2|u| b. Given points A(3, -4, 2) and B(-12, 16, 12), point P, lying between A and B such that AP= 3/5AB would have coordinates a) P(-27/5, 36/5, 42/5) b) P(-6, 8,...
a)Suppose U is a nonempty subset of the vector space V over field F. Prove that...
a)Suppose U is a nonempty subset of the vector space V over field F. Prove that U is a subspace if and only if cv + w ∈ U for any c ∈ F and any v, w ∈ U b)Give an example to show that the union of two subspaces of V is not necessarily a subspace.
1.a Implication: If an endomorphism f : V → V is not an isomorphism, then it...
1.a Implication: If an endomorphism f : V → V is not an isomorphism, then it must have a non-trivial kernel. Use this implication, together with the definition of determinant given in class, to show that if for an endomorphism f : V → V we have det(f) 6 /= 0, then in fact f is an isomorphism. 1.b. The Rank-Nullity Theorem applies to a linear map f : V → W (where V is finite dimensional) and claims that:...
Suppose f is entire, with real and imaginary parts u and v satisfying u(x, y) v(x,...
Suppose f is entire, with real and imaginary parts u and v satisfying u(x, y) v(x, y) = 3 for all z = x + iy. Show that f is constant. Be clearly, please. Do not upload same answers from others on Chegg. THANKS
(a) Prove that if two linear transformations T,U : V --> W have the same values...
(a) Prove that if two linear transformations T,U : V --> W have the same values on a basis for V, i.e., T(x) = U(x) for all x belong to beta , then T = U. Conclude that every linear transformation is uniquely determined by the images of basis vectors. (b) (7 points) Determine the linear transformation T : P1(R) --> P2(R) given by T (1 + x) = 1+x^2, T(1- x) = x by finding the image T(a+bx) of...
We have a linear transformation f:V-> V. The minimal polynomial is m(x)=(x-λ1)p1(x-λ2)p2. (i) Prove that V=V1+V2,(direct...
We have a linear transformation f:V-> V. The minimal polynomial is m(x)=(x-λ1)p1(x-λ2)p2. (i) Prove that V=V1+V2,(direct Sum) with V1=Ker(f-λ1Iv) and V2=Ker(f-λ2Iv) , λ1 non equal with λ2 (ii) Prove that V1 and V2 is invariant from f.
Suppose f is entire, with real and imaginary parts u and v satisfying u(x, y) v(x,...
Suppose f is entire, with real and imaginary parts u and v satisfying u(x, y) v(x, y) = 3 for all z = x + iy. Show that f is constant.