Question

Which functions fit the description? function 1: f(x)=x^2 + 12. function 2: f(x)= −e^x^2 - 1....

Which functions fit the description?

function 1: f(x)=x^2 + 12. function 2: f(x)= −e^x^2 - 1. function 3: f(x)= e^3x function 4: f(x)=x^5 -2x^3 -1

a. this function defined over all realnumbers has 3 inflection points

b. this function has no global minimum on the interval (0,1)

c. this function defined over all real numbers has a global min but no global max

d. this function defined over all real numbers is non-decreasing everywhere

e. this function (defined over all real numbers) has no critical points or inflection points

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The function f(x) = 3x 4 − 4x 3 + 12 is defined for all real...
The function f(x) = 3x 4 − 4x 3 + 12 is defined for all real numbers. Where is the function f(x) decreasing? (a) (1,∞) (b) (−∞, 1) (c) (0, 1) (d) Everywhere (e) Nowhere
4. Given the function y = f(x) = 2x^3 + 3x^2 – 12x + 2 a....
4. Given the function y = f(x) = 2x^3 + 3x^2 – 12x + 2 a. Find the intervals where f is increasing/f is decreasing b. Find the intervals where f is concave up/f is concave down c. Find all relative max and relative min (state which is which and why) d. Find all inflection points (also state why)
what does a derivative tell us? F(x)=2x^2-5x-3, [-3,-1] F(x)=x^2+2x-1, [0,1] Give the intervals where the function...
what does a derivative tell us? F(x)=2x^2-5x-3, [-3,-1] F(x)=x^2+2x-1, [0,1] Give the intervals where the function is increasing or decreasing? Identify the local maxima and minima Identify concavity and inflection points
3. Given the function ?(?) = (x^3/3)-(3x^2/2)+2x: a. Find all critical numbers. b. Identify which, if...
3. Given the function ?(?) = (x^3/3)-(3x^2/2)+2x: a. Find all critical numbers. b. Identify which, if any, critical numbers are local max or min and explain your answer. c. Find any inflection points and give the x value. d. On the interval [0.6, 2.6] identify the absolute max and min, if any. and justify your answer. e. Give the interval where the curve is concave up and justify your answer.
6. Let ?(?) be a continuous function defined for all real numbers, with?'(?)=(?−1)2(?−3)3(?−2) and ?''(?) =...
6. Let ?(?) be a continuous function defined for all real numbers, with?'(?)=(?−1)2(?−3)3(?−2) and ?''(?) = (? − 1)(3? − 7)(2? − 3)(? − 3)2. On what intervals is ? increasing and decreasing? Increasing on: Decreasing on: Find the x-coordinate(s) of all local minima and maxima of ?. Local min at x=__________________ Local max at x=_________________ c. On what intervals if ? concave up and concave down? Concave up on: Concave down on: d. Find the x-coordinate(s) of points of...
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum...
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum values. Justify your answer using the first or second derivative test . round your answers to the nearest tenth as needed. b)find the intervals of concavity and any inflection points of f. Round to the nearest tenth as needed. c)graph f(x) and label each important part (domain, x- and y- intercepts, VA/HA, CN, Increasing/decreasing, local min/max values, intervals of concavity/ inflection points of f?
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical...
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical Numbers and determine the intervals where h(x) is increasing and decreasing. Find the point of inflection (if it exists) and determine the intervals where h(x) concaves up and concaves down. Find the local Max/Min (including the y-coordinate)
- Suppose f is a function such that f′(x) = (x+ 1)(x−2)2(x−3), so that f has...
- Suppose f is a function such that f′(x) = (x+ 1)(x−2)2(x−3), so that f has the critical points x=−1,2,3. Determine the open intervals on which f is increasing/decreasing. - Let f be the same function as in Problem 9. Determine which, if any, of the critical points is the location of a local extremum, and indicate whether each extremum is a maximum or minimum. Im confused on how to figure out if a function is increasing and decreasing and...
consider the function f(x) = x/1-x^2 (a) Find the open intervals on which f is increasing...
consider the function f(x) = x/1-x^2 (a) Find the open intervals on which f is increasing or decreasing. Determine any local minimum and maximum values of the function. Hint: f'(x) = x^2+1/(x^2-1)^2. (b) Find the open intervals on which the graph of f is concave upward or concave downward. Determine any inflection points. Hint f''(x) = -(2x(x^2+3))/(x^2-1)^3.
For f(x)=2+3x+x3 find: A.increasing and decreasing intervals B. Local max and min coordinates C. Concativity Intervals...
For f(x)=2+3x+x3 find: A.increasing and decreasing intervals B. Local max and min coordinates C. Concativity Intervals (UP & DOWN INTERVALS) D. Inflection points coordinates E. Graph of f(x)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT