Question

Let f(x) = 1/x and g(x) = 1/x+1 . Evaluate f(g(x)) and g(f(x)). Then: A) Sketch...

Let f(x) = 1/x and g(x) = 1/x+1 . Evaluate f(g(x)) and g(f(x)). Then:

A) Sketch the functions f(x), g(x), f(g(x)), g(f(x))

B) Determine where each functions are continuous.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Sketch and find area enclosed by functions f and g F(x)=2x G(x)=x(sqrt(x+1))
Sketch and find area enclosed by functions f and g F(x)=2x G(x)=x(sqrt(x+1))
Let f and g be continuous functions on the reals and let S={x in R |...
Let f and g be continuous functions on the reals and let S={x in R | f(x)>=g(x)} . Show that S is a closed set.
1. Let f : R2 → R2, f(x,y) = ?g(x,y),h(x,y)? where g,h : R2 → R....
1. Let f : R2 → R2, f(x,y) = ?g(x,y),h(x,y)? where g,h : R2 → R. Show that f is continuous at p0 ⇐⇒ both g,h are continuous at p0
Sketch the graphs of the functions. f(x) = 3x and g(x) = x squareoot x+1 Find...
Sketch the graphs of the functions. f(x) = 3x and g(x) = x squareoot x+1 Find the area of the region completely enclosed by the graphs of the given functions f and g.
Let f, g : X −→ C denote continuous functions from the open subset X of...
Let f, g : X −→ C denote continuous functions from the open subset X of C. Use the properties of limits given in section 16 to verify the following: (a) The sum f+g is a continuous function. (b) The product fg is a continuous function. (c) The quotient f/g is a continuous function, provided g(z) != 0 holds for all z ∈ X.
a.)Consider the function f (x) = 3x/ x^2 +1 i) Evaluate f (x+1), and f (x)+1....
a.)Consider the function f (x) = 3x/ x^2 +1 i) Evaluate f (x+1), and f (x)+1. Explain the difference. Do the same for f (2x) and 2f (x). ii) Sketch y = f (x) on the interval [−2, 2]. iii) Solve the equations f (x) = 1.2 and f (x) = 2. In each case, if a solution does not exist, explain. iv) What is the domain of f (x)? b.)Let f (x) = √x −1 and g (x) =...
. Let f and g : [0, 1] → R be continuous, and assume f(x) =...
. Let f and g : [0, 1] → R be continuous, and assume f(x) = g(x) for all x < 1. Does this imply that f(1) = g(1)? Provide a proof or a counterexample.
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous...
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous functions. If limx→a f(x) = f(a) and limx→a g(x) = g(a) with f(a) < g(a), then there exists δ > 0 such that x ∈ D, 0 < |x − a| < δ =⇒ f(x) < g(x).
Let X be any set and let (G, ·) be a group. Let homset(X, G) be...
Let X be any set and let (G, ·) be a group. Let homset(X, G) be the set of all functions with domain X and codomain G. Prove that (homset(X, G), ∗), where (f ∗ g)(x) := f(x) · g(x), is a group.
Let X, Y and Z be sets. Let f : X → Y and g :...
Let X, Y and Z be sets. Let f : X → Y and g : Y → Z functions. (a) (3 Pts.) Show that if g ◦ f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X → Y and g : Y → Z such that g ◦ f is injective but g is not injective. (c) (3 Pts.) Show that...