Question

Solve the ODE: ?′′+4?=?(?)−sin(?−?/2)?(?−?/2);?(0)=0,?′(0)=0

Solve the ODE:

?′′+4?=?(?)−sin(?−?/2)?(?−?/2);?(0)=0,?′(0)=0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the IVP with Cauchy-Euler ODE: x^2 y''+ xy'−16y = 0; y(1) = 4, y'(1) =...
Solve the IVP with Cauchy-Euler ODE: x^2 y''+ xy'−16y = 0; y(1) = 4, y'(1) = 0
solve the ODE solving for the general solutions y''+y'-12y=sin(t)e^(3t)
solve the ODE solving for the general solutions y''+y'-12y=sin(t)e^(3t)
Suppose y(t) is governed by ODE t3y'''(t) + 6t2y''(t) + 4ty'(t) = 0. Solve this ODE...
Suppose y(t) is governed by ODE t3y'''(t) + 6t2y''(t) + 4ty'(t) = 0. Solve this ODE by performing the following procedure: 1) Let x = ln(t) and set y(t) = φ(x) = φ(ln(t)), 2) Use chain rule of differentiation to calculate derivatives y in terms derivatives of φ, 3) by appropriate substitution, construct an ODE governing φ(x) and solve it, 4) use this φ(x) to get back y(t).
Consider the ‘spring-mass system’ represented by an ODE x′′ (t) + 16x(t) = 5 sin 4t...
Consider the ‘spring-mass system’ represented by an ODE x′′ (t) + 16x(t) = 5 sin 4t with ICs: x(0) = 2, x′ (0) = 1. Answer the questions (a)–(c): (a) Is there damping in the system? Why or why not? (b) Is there resonance in the system? Why or why not? (c) Solve the ODE.
Solve the following differential equations 1. cos(t)y' - sin(t)y = t^2 2. y' - 2ty =...
Solve the following differential equations 1. cos(t)y' - sin(t)y = t^2 2. y' - 2ty = t Solve the ODE 3. ty' - y = t^3 e^(3t), for t > 0 Compare the number of solutions of the following three initial value problems for the previous ODE 4. (i) y(1) = 1 (ii) y(0) = 1 (iii) y(0) = 0 Solve the IVP, and find the interval of validity of the solution 5. y' + (cot x)y = 5e^(cos x),...
Solve the IVP with Cauchy-Euler ODE: x^2 y''+3xy'+4y=0; y(1)=0, y’(1)=−2
Solve the IVP with Cauchy-Euler ODE: x^2 y''+3xy'+4y=0; y(1)=0, y’(1)=−2
Solve the Constant Coefficient Linear ODE: y''''+32y''+256y=0 y(0) = 2, y'(0) = -14, y''(0) = -48,...
Solve the Constant Coefficient Linear ODE: y''''+32y''+256y=0 y(0) = 2, y'(0) = -14, y''(0) = -48, y'''(0) = 288
Solve 6cos2(t)+sin(t)−4=06cos2(t)+sin(t)-4=0 for all solutions 0≤t<2π0≤t<2π
Solve 6cos2(t)+sin(t)−4=06cos2(t)+sin(t)-4=0 for all solutions 0≤t<2π0≤t<2π
5.1 Application of Linear Second Order ODE): Consider the ‘spring-mass system’ represented by an ODE x′′...
5.1 Application of Linear Second Order ODE): Consider the ‘spring-mass system’ represented by an ODE x′′ (t) + 16x(t) = 5 sin 4t with ICs: x(0) = 2, x′ (0) = 1. Answer the questions (a)–(c): (a) Is there damping in the system? Why or why not? (b) Is there resonance in the system? Why or why not? (c) Solve the ODE.
Solve the ODE y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0
Solve the ODE y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT