Question

2. (a) Let a,b ≥0. Define the function f by f(x)=(a+b+x)/3-∛abx Determine if f has a...

2. (a) Let a,b ≥0. Define the function f by f(x)=(a+b+x)/3-∛abx Determine if f has a global minimum on [0,∞), and if it does, find the point at which the global minimum occurs.

(b) Show that for every a,b,c≥0 we have (a+b+c)/3≥∛abc with equality holding if and only if a=b=c. (Hint: Use Part (a).)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Model the data using an exponential function f(x) = Abx. HINT [See Example 1.] x 0...
Model the data using an exponential function f(x) = Abx. HINT [See Example 1.] x 0 1 2 f(x) 100 90 81 f(x) =
Let f(x, y) = −x 3 + y 2 . Show that (0, 0) is a...
Let f(x, y) = −x 3 + y 2 . Show that (0, 0) is a saddle point. Note that you cannot use the second derivative test for this function. Hint: Find the curve of intersection of the graph of f with the xz-plane.
1. (Continued) Consider the function (e) (f) f (x) = x3 − 7 x + 5....
1. (Continued) Consider the function (e) (f) f (x) = x3 − 7 x + 5. 2 (0.5 pt) Find the possible inflection points of f(x). Show work. (0.5 pt) Test the possible inflection points of f(x) to determine if each point is or is not an inflection point. Your work must show that you tested each point properly and support your conclusion. Be sure to state your conclusion. Show work. (g) (1 pt) Find the global minimum and global...
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0...
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0 for every x ∈ [a,b]. 1) Show that either f(x) > 0 for every x ∈ [a,b] or f(x) < 0 for every x ∈ [a,b]. 2) Assume that f(x) > 0 for every x ∈ [a,b] and prove that there exists ε > 0 such that f(x) ≥ ε for all x ∈ [a,b].
Let f(x) = x^3 - x a) Find the equation of the secant line through (0,f(0))...
Let f(x) = x^3 - x a) Find the equation of the secant line through (0,f(0)) and (2,f(2)) b) State the Mean-Value Theorem and show that there is only one number c in the interval that satisfies the conclusion of the Mean-Value Theorem for the secant line in part a c) Find the equation of the tangent line to the graph of f at point (c,f(c)). d) Graph the secant line in part (a) and the tangent line in part...
Define g(x) = f(x) + tan-1 (2x) on [−1, √3/2 ]. Suppose that both f'' and...
Define g(x) = f(x) + tan-1 (2x) on [−1, √3/2 ]. Suppose that both f'' and g'' are continuous for all x-values on [−1, √3/2 ]. Suppose that the only local extrema that f has on the interval [−1, √3/2 ] is a local minimum at x = 1/2 . (a) Determine the open intervals of increasing and decreasing for g on the interval [1/2 , √3/2] . (b) Suppose f(1/2) = 0 and f(√3/2) = 2. Find the absolute...
Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)?...
Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)? Let f(x) be a continuous, everywhere differentiable function. What kind information does f''(x) provide regarding f(x)? Let f(x) be a continuous, everywhere differentiable function. What kind information does f''(x) provide regarding f'(x)? Let h(x) be a continuous function such that h(a) = m and h'(a) = 0. Is there enough evidence to conclude the point (a, m) must be a maximum or a minimum?...
Let X = [0, 1) and Y = (0, 2). a. Define a 1-1 function from...
Let X = [0, 1) and Y = (0, 2). a. Define a 1-1 function from X to Y that is NOT onto Y . Prove that it is not onto Y . b. Define a 1-1 function from Y to X that is NOT onto X. Prove that it is not onto X. c. How can we use this to prove that [0, 1) ∼ (0, 2)?
Let f:[0,1]——>R be define by f(x)= x if x belong to rational number and 0 if...
Let f:[0,1]——>R be define by f(x)= x if x belong to rational number and 0 if x belong to irrational number and let g(x)=x (a) prove that for all partitions P of [0,1],we have U(f,P)=U(g,P).what does mean about U(f) and U(g)? (b)prove that U(g) greater than or equal 0.25 (c) prove that L(f)=0 (d) what does this tell us about the integrability of f ?
Let f(x, y) = (2y-x^2)(y-2x^2) a. Show that f(x, y) has a stationary point at (0,...
Let f(x, y) = (2y-x^2)(y-2x^2) a. Show that f(x, y) has a stationary point at (0, 0) and calculate the discriminant at this point. b. Show that along any line through the origin, f(x, y) has a local minimum at (0, 0)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT