Question

Suppose a,b,c belong to Z and gcd(b,c) = 1 . Prove that if b/(ac), then b/a.

Suppose a,b,c belong to Z and gcd(b,c) = 1 . Prove that if b/(ac), then b/a.

Homework Answers

Answer #1

Proof:

Since  ,  there exist integers   and   such that   .

Multiply both side by   we get

Since   and   we have

i.e

i.e  

Hence ,  proved

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c...
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c x gcd(a, b). (Note that c gcd(a, b) means c times the greatest common division of a and b) (b) What is the greatest common divisor of a − 1 and a + 1? (There are two different cases you need to consider.)
Prove that if gcd(a,b)=1 and c|(a+b), then gcd(a,c)=gcd(b,c)=1.
Prove that if gcd(a,b)=1 and c|(a+b), then gcd(a,c)=gcd(b,c)=1.
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1
Prove that if a > b then gcd(a, b) = gcd(b, a mod b).
Prove that if a > b then gcd(a, b) = gcd(b, a mod b).
Prove that if b doesnt equal 0, and a = bx + cy, then gcd(b,c) <=...
Prove that if b doesnt equal 0, and a = bx + cy, then gcd(b,c) <= gcd(a,b)
Prove: Let (a,b,c) be a primitive pythagorean triple. then we have the following 1. gcd(c-b, c+b)...
Prove: Let (a,b,c) be a primitive pythagorean triple. then we have the following 1. gcd(c-b, c+b) =1 2. c-b and c+b are squares
Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only...
Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only if gcd(a, b^2 ) = 1
How can I prove that if a>b>0, gcd(a,b) = gcd(a-b,b)
How can I prove that if a>b>0, gcd(a,b) = gcd(a-b,b)