Question

6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3...

6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3 + 1 2 t 2 i (a) Find r 0 (t) (b) Find the unit tangent vector to the space curve of r(t) at t = 3. (c) Find the vector equation of the tangent line to the curve at t = 3

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find a unit tangent vector to the curve r = 3 cos 3t i + 3...
Find a unit tangent vector to the curve r = 3 cos 3t i + 3 sin 2t j at t = π/6 .
Find the derivative r '(t) of the vector function r(t). <t cos 3t , t2, t...
Find the derivative r '(t) of the vector function r(t). <t cos 3t , t2, t sin 3t>
For the following equation x=2t^2,y=3t^2,z=4t^2;1 less or equal to t less or equal to 3 i)...
For the following equation x=2t^2,y=3t^2,z=4t^2;1 less or equal to t less or equal to 3 i) Write the positive vector tangent of the curve with parametric equations above. ii) Find the length function s(t) for the curve. iii) Write the position vector of s and verify by differentiation that this position vector in terms of s is a unit tangent to the curve.
6) please show steps and explanation. a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation...
6) please show steps and explanation. a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the area of the triangle PQR.
Find T, N, and B for the given space curve. r(t) = (t2-9)i + (2t-9)j +...
Find T, N, and B for the given space curve. r(t) = (t2-9)i + (2t-9)j + 4k
20. Find the unit tangent vector T(t) and then use it to find a set of...
20. Find the unit tangent vector T(t) and then use it to find a set of parametric equations for the line tangent to the space curve given below at the given point. r(t)= -5t i+ 2t^2 j+3tk, t=5
Consider the parameterized motion given by r(t)=3t^2i-2t^2j+(6-t^3)k. Where is the object at time t=1? What is...
Consider the parameterized motion given by r(t)=3t^2i-2t^2j+(6-t^3)k. Where is the object at time t=1? What is the velocity at t=1? What is the speed at t=1? How far does the object move from 0≤t≤1? Round your answer to 2 decimal places. * r, i, j, and k should all have vector arrows above them
Consider the following vector function. r(t) = <9t,1/2(t)2,t2> (a) Find the unit tangent and unit normal...
Consider the following vector function. r(t) = <9t,1/2(t)2,t2> (a) Find the unit tangent and unit normal vectors T(t) and N(t). (b) Use this formula to find the curvature. κ(t) =
Consider the curve r(t) = cost(t)i + sin(t)j + (2/3)t2/3k Find: a. the length of the...
Consider the curve r(t) = cost(t)i + sin(t)j + (2/3)t2/3k Find: a. the length of the curve from t = 0 to t = 2pi. b. the equation of the tangent line at the point t = 0. c. the speed of the point moving along the curve at the point t = 2pi
Let C be the curve parametrized by r(t)=(t2+2)i+(1+t)j+2t^2k, with 0≤t≤. Consider the conservative vector field F=yz2i+xz2j+2xyzk,...
Let C be the curve parametrized by r(t)=(t2+2)i+(1+t)j+2t^2k, with 0≤t≤. Consider the conservative vector field F=yz2i+xz2j+2xyzk, Calculate ∫CF⋅dr