Question

Evaluate the surface integral. S (x + y + z) dS, S is the parallelogram with...

Evaluate the surface integral.

S

(x + y + z) dS, S is the parallelogram with parametric equations

x = u + v,

y = u − v,

z = 1 + 2u + v,

0 ≤ u ≤ 7,

0 ≤ v ≤ 4.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate the surface integral (x+y+z)dS when S is part of the half-cylinder x^2 +z^2=1, z≥0, that...
Evaluate the surface integral (x+y+z)dS when S is part of the half-cylinder x^2 +z^2=1, z≥0, that lies between the planes y=0 and y=2
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = y i − x j + z2 k S is the helicoid (with upward orientation) with vector equation r(u, v) = u cos v i + u sin v j + v k, 0 ≤ u ≤ 5, 0...
Evaluate the surface integral Evaluate the surface integral S F · dS for the given vector...
Evaluate the surface integral Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i + y j + 9 k S is the boundary of the region enclosed by the cylinder x2 + z2 = 1 and the planes y = 0 and x + y =...
Evaluate the surface integral. S z + x2y dS S is the part of the cylinder...
Evaluate the surface integral. S z + x2y dS S is the part of the cylinder y2 + z2 = 4 that lies between the planes x = 0 and x = 3 in the first octant
Evaluate the surface integral. S x2yz dS, S is the part of the plane z =...
Evaluate the surface integral. S x2yz dS, S is the part of the plane z = 1 + 2x + 3y that lies above the rectangle [0, 4] × [0, 2]
Evaluate the surface integral F · dS where F = 5xyi + x^2j + 5yzk and...
Evaluate the surface integral F · dS where F = 5xyi + x^2j + 5yzk and S is the surface z = xe^y, 0 ≤ x ≤ 1,0 ≤ y ≤ 1, with upwards orientation. F · dS =
Evaluate the surface integral (double integral) over S: G(x,y,z) d sigma using a parametric description of...
Evaluate the surface integral (double integral) over S: G(x,y,z) d sigma using a parametric description of the surface. G(x,y,z)= 3z^2, over the hemisphere x^2+y^2+z^2=16, with z greater than or equal to 0.
] Evaluate the surface integral SF∙dS for the vector field Fx,y,z=xi+yj+zk , where S is the...
] Evaluate the surface integral SF∙dS for the vector field Fx,y,z=xi+yj+zk , where S is the surface given by z=1-x2-y2, z≥0 , where S has the positive (outward) orientation. Note: SF∙N dS=RF∙-gxx,yi-gyx,yj+kdA
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 4 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and has...
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 4zk, S is the hemisphere x^2 + y2^ + z^2 = 4, z ≥ 0, oriented downward