Question

The short term demand for a product can be approximated by q=D(p) = 200(300−p^2)where p represents...

The short term demand for a product can be approximated by q=D(p) = 200(300−p^2)where p represents the price of the product, in dollars per unit, and q is the quantity of units demanded.

(a) Determine the elasticity function E(p).

(b) Use the elasticity of demand to find the price which maximizes revenue for this product.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The short term demand for a product can be approximated by q=D(p)=175(100−p2) where p represents the...
The short term demand for a product can be approximated by q=D(p)=175(100−p2) where p represents the price of the product, in dollars, and q is the quantity demanded. (a) Determine the elasticity function. E(p)= _______ equation editorEquation Editor (b) Use the elasticity of demand to find the price which maximizes revenue for this product p= ______ equation editorEquation Editor dollars. Round to two decimal places.
The short term demand for a product can be approximated by q = D(p) = 18...
The short term demand for a product can be approximated by q = D(p) = 18 − 2 √p where p represents the price of the product, in dollars per unit, and q is the number of units demanded. Determine the elasticity function. Use the elasticity of demand to determine if the current price of $50 should be raised or lowered to maximize total revenue.
The demand function for a Christmas music CD is given by q=D(p)=0.25(225−p2)where q (measured in units...
The demand function for a Christmas music CD is given by q=D(p)=0.25(225−p2)where q (measured in units of a hundred) is the quantity demanded per week and p is the unit price in dollars. (a) Find the elasticity function E(p)= _________ (b) Evaluate the elasticity at 10. E(10)= ________ (c) Should the unit price be lowered slightly from 10 in order to increase revenue? Yes or No. (d) Use the elasticity of demand to find the price which maximizes revenue for...
The demand function for a Christmas music CD is given by q=0.25(225−p^2) where q (measured in...
The demand function for a Christmas music CD is given by q=0.25(225−p^2) where q (measured in units of a hundred) is the quantity demanded per week and pp is the unit price in dollars. (a) Evaluate the elasticity at p=10. E(10)= (b) Should the unit price be lowered slightly from 10 in order to increase revenue?     yes    no    (c) When is the demand unit elastic?  p=______dollars (d) Find the maximum revenue. Maximum revenue =________ hundreds of dollars
The demand function for a certain product is p = 3000, where q is the quantity...
The demand function for a certain product is p = 3000, where q is the quantity of the product produced and q sold while p is the unit price when q units are produced. Find the point elasticity of demand when q = 300. Is the demand elastic, inelastic, or unit elastic when q = 300?
A doughnut shop determines the demand function q=D(p)= 300/(p+3)^5 for a dozen doughnuts where q is...
A doughnut shop determines the demand function q=D(p)= 300/(p+3)^5 for a dozen doughnuts where q is the number of dozen doughnuts sold per day when the price is p dollars per dozen. A.) Find the elasticity equation. B.) Calculate the elasticity at a price of $9. Determine if the demand elastic, inelastic, or unit elastic? C.) At $9 per dozen, will a small increase in price cause the total revenue to increase or decrease?
Suppose that the price p (in dollars) of a product is given by the demand function...
Suppose that the price p (in dollars) of a product is given by the demand function p = (18,000 − 60x) / (400 − x) where x represents the quantity demanded and x < 300. f the daily demand is decreasing at a rate of 100 units per day, at what rate (in dollars per day) is the price changing when the price per unit is $30?
The demand for a product is given by p = d ( q ) = −...
The demand for a product is given by p = d ( q ) = − 0.8 q + 150 and the supply for the same product is given by p = s ( q ) = 5.2 q. For both functions, q is the quantity and p is the price in dollars. Suppose the price is set artificially at $70 (which is below the equilibrium price). a) Find the quantity supplied and the quantity demanded at this price. b)...
3) The demand for a product is given by p = d ( q ) =...
3) The demand for a product is given by p = d ( q ) = − 0.8 q + 150 and the supply for the same product is given by p = s ( q ) = 5.2 q. For both functions, q is the quantity and p is the price in dollars. Suppose the price is set artificially at $70 (which is below the equilibrium price). a) Find the quantity supplied and the quantity demanded at this price....
Suppose the demand equation for a certain product is given by ?(?) = √(−2? + 300),...
Suppose the demand equation for a certain product is given by ?(?) = √(−2? + 300), where ? is the price ($) and ?(?) is the number of units demanded at that price. a. Find the equation for the elasticity equation. Use it to determine the elasticity of demand for a price of $50 and $100. Describe in words what these mean and tell if the demand is elastic, inelastic, or has unit elasticity. Tell for each what you would...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT