Question

show that the function f(x,y,z) = 1/√(x2+y2+z2) provides the equation fxx + fyy + fzz =...

show that the function f(x,y,z) = 1/√(x2+y2+z2) provides the equation fxx + fyy + fzz = 0, called the 3−D Laplace equation.

Homework Answers

Answer #1

Using partial differentiation we show that the given result.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.
Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.
​Suppose that the function f(x, y) has continuous partial derivatives fxx, fyy, and fxy at all...
​Suppose that the function f(x, y) has continuous partial derivatives fxx, fyy, and fxy at all points (x,y) near a critical points (a, b). Let D(x,y) = fxx(x, y)fyy(x,y) – (fxy(x,y))2 and suppose that D(a,b) > 0. ​(a) Show that fxx(a,b) < 0 if and only if fyy(a,b) < 0. ​(b) Show that fxx(a,b) > 0 if and only if fyy(a,b) > 0.
Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0
Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0
Given the function f(x, y, z) = (x2 + y2 + z2 )−1/2 a) what is...
Given the function f(x, y, z) = (x2 + y2 + z2 )−1/2 a) what is the gradient at the point (12,0,16)? b) what is the directional derivative of f in the direction of the vector u = (1,1,1) at the point (12,0,16)?
Suppose f(x,y,z)=x2+y2+z2f(x,y,z)=x2+y2+z2 and WW is the solid cylinder with height 55 and base radius 44 that...
Suppose f(x,y,z)=x2+y2+z2f(x,y,z)=x2+y2+z2 and WW is the solid cylinder with height 55 and base radius 44 that is centered about the z-axis with its base at z=−1z=−1. Enter θ as theta. with limits of integration A = 0 B = 2pi C = 0 D = 4 E = -1 F = 4 (b). Evaluate the integral
Use the method of Lagrange multipliers to find the minimum value of the function f(x,y,z)=x2+y2+z2 subject...
Use the method of Lagrange multipliers to find the minimum value of the function f(x,y,z)=x2+y2+z2 subject to the constraints x+y=10 and 2y−z=3.
Find the linear approximation of the function f(x, y, z) = x2 + y2 + z2...
Find the linear approximation of the function f(x, y, z) = x2 + y2 + z2 at (6, 2, 9) and use it to approximate the number 6.012 + 1.972 + 8.982 . (Round your answer to five decimal places.) f(6.01, 1.97, 8.98) ≈
Find the minimum of f(x, y, z) = x2 + y2 + z2 subject to the...
Find the minimum of f(x, y, z) = x2 + y2 + z2 subject to the two constraints x + y + z = 1 and 4x + 5y + 6z = 10
Find fxx(x,y), fxy(x,y), fyx(x,y), and fyy(x,y) for the function f f(x,y)= 8xe3xy
Find fxx(x,y), fxy(x,y), fyx(x,y), and fyy(x,y) for the function f f(x,y)= 8xe3xy
Find the minimum of f(x,y,z) = x2 + y2 + z2 subject to the two constraints...
Find the minimum of f(x,y,z) = x2 + y2 + z2 subject to the two constraints x + 2y + z = 3 and x - y = 4 by answering following questions a) write out the lagrange equation involving lagrange multipliers λ(lamba) and μ(mu) b) solve for lamba in terms of x and y c) solve for x,y,z using the constraints d) determine the minimum value