Question

Let f be the function given by f (x, y) = 4ay2 −x2y3 −x2 for all...

Let f be the function given by f (x, y) = 4ay2 −x2y3 −x2 for all (x, y) in R2, where

a ∈ R.

(a) Determine all stationary points to f when a = 0.

(b) Determine all stationary points to f when a > 0.

(c) Determine all stationary points to f when a < 0.

(d) Determine the Taylor polynomial of the second order for f origin when a = −1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the Rosenbrock function, f(x) = 100(x2 - x12)2 + (1 -x1)2. Let x*=(1,1), the minimum...
Consider the Rosenbrock function, f(x) = 100(x2 - x12)2 + (1 -x1)2. Let x*=(1,1), the minimum of the function. Let r(x) be the second order Taylor series for f(x) about the base point x*, r(x) will be a quadratic, and therefore can be written: r(x) = A11(x1-x1*)2 + 2A12(x1-x1*)(x2-x2*) + A22(x2-x2*)2 + b1(x1-x1*) + b2(x2-x2*) + c Find all the coefficients in the formula for r(x) - What is A11, A12, A22, b1, b2, and c?
Let f(x,y)=2ex+y. Find the second-order Taylor polynomial for f(x,y) at the point (0,0). Group of answer...
Let f(x,y)=2ex+y. Find the second-order Taylor polynomial for f(x,y) at the point (0,0). Group of answer choices 2+x+y+12x2+12y2 2x+2y+x2+y2 2+2x+2y+x2+2xy+y2 2−2x−2y+x2−xy+y2 None of the above.
2. (a) Determine all first and second order partial derivatives of f(x,y,z) = x2y3 sin(xz) (b)...
2. (a) Determine all first and second order partial derivatives of f(x,y,z) = x2y3 sin(xz) (b) Determine all first-order partial derivatives of g(x,y,z)=u2y+x2v where u=exz, v=sin(yz)
Assume that all the given functions have continuous second-order partial derivatives. If z = f(x, y),...
Assume that all the given functions have continuous second-order partial derivatives. If z = f(x, y), where x = r2 + s2 and y = 6rs, find ∂2z/∂r∂s. (Compare with Example 7.) ∂2z/∂r∂s = ∂2z/∂x2 + ∂2z/∂y2 + ∂2z/∂x∂y + ∂z/∂y
Let f(x, y) = sin x √y. Find the Taylor polynomial of degree two of f(x,...
Let f(x, y) = sin x √y. Find the Taylor polynomial of degree two of f(x, y) at (x, y) = (0, 9). Give an reasonable approximation of sin (0.1)√ 9.1 from the Taylor polynomial of degree one of f(x, y) at (0, 9).
Let the function f on R2 be f(x,y) = x3−3αxy+y3,∀(x,y) ∈R2, where α ∈R is a...
Let the function f on R2 be f(x,y) = x3−3αxy+y3,∀(x,y) ∈R2, where α ∈R is a parameter. Show that f has no global minimizer or global maximizer for any α.
Determine the third Taylor polynomial of the given function at x = 0. f(x)=1/x+3
Determine the third Taylor polynomial of the given function at x = 0. f(x)=1/x+3
Let F ( x , y ) = 〈 e^x + y^2 − 3 , −...
Let F ( x , y ) = 〈 e^x + y^2 − 3 , − e ^(− y) + 2 x y + 4 y 〉. a) Determine if F ( x , y ) is a conservative vector field and, if so, find a potential function for it. b) Calculate ∫ C F ⋅ d r where C is the curve parameterized by r ( t ) = 〈 2 t , 4 t + sin ⁡ π...
Question 1a Consider the polynomial function P(x) = x3+x2−20x. Sketch a graph of y = P(x)...
Question 1a Consider the polynomial function P(x) = x3+x2−20x. Sketch a graph of y = P(x) by: determining the zeros of P(x), identifying the y-intercept of y = P(x), using test points to examine the sign of P(x) to either side of each zero and deducing the end behaviour of the polynomial. b Consider the quadratic function f(x) = 2x2 + 8x−1. (a) Express f(x) in standard form. (b) Determine the vertex of f(x). (c) Determine the x- and y-intercepts...
f(x, y) = x2 + y2 + 2xy + 6. 1. Find all the local extremas....
f(x, y) = x2 + y2 + 2xy + 6. 1. Find all the local extremas. 2. Does the function f has an absolute max or min on R2 ? 3. Draw E = {(x, y) ∈ R2; x >=0; y >=0; x + y<=1}. 4. Explain why f has an absolute max and min on E and find them.