Question

Find the potential function f for the field F. F = 10x9y4z9i + 4x10y3z9j + 9x10y4z8k...

Find the potential function f for the field F.

F = 10x9y4z9i + 4x10y3z9j + 9x10y4z8k

a)f(x, y, z) = x10y4z9 + 4x10y3z9 + 9x10y4z8 + C

b)f(x, y, z) =

c)f(x, y, z) = x10y4z9 + C

d)f(x, y, z) = x30y12z27 + C

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the vector field F(x,y,z)=〈−3y,−3x,−4z〉. Find a potential function f(x,y,z) for F which satisfies f(0,0,0)=0.
Consider the vector field F(x,y,z)=〈−3y,−3x,−4z〉. Find a potential function f(x,y,z) for F which satisfies f(0,0,0)=0.
Suppose that the vector field F(x,y,z) has potential function f(x,y,z) = y2+ 3xz and C is...
Suppose that the vector field F(x,y,z) has potential function f(x,y,z) = y2+ 3xz and C is a path from (1,1,−1) to (0,5,π). Compute ∫CF·dr.
For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x,...
For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x, y) such that F~ (x, y) = ∇f(x, y) = h ∂f ∂x , ∂f ∂y i by integrating P and Q with respect to the appropriate variables and combining answers. Then use that potential function to directly calculate the given line integral (via the Fundamental Theorem of Line Integrals): a) F~ 1(x, y) = hx 2 , y2 i Z C F~ 1...
The function f(x, y) = x^−2 y^3 is a potential for a vector field F. Use...
The function f(x, y) = x^−2 y^3 is a potential for a vector field F. Use this to evaluate ∫ C F · dr where C is a curve from (1, 1) to (2, 2).
a. Is F(x,y,z)= <(e^z)siny,(e^z)cosx,(e^x)siny> a conservative vector field? Justify. b. Is F incompressible? Explain. Is it...
a. Is F(x,y,z)= <(e^z)siny,(e^z)cosx,(e^x)siny> a conservative vector field? Justify. b. Is F incompressible? Explain. Is it irrotational? Explain. c. The vector field F(x,y,z)= < 6xy^2+e^z, 6yx^2 +zcos(y),sin(y)xe^z > is conservative. Find the potential function f. That is, the function f such that ▽f=F. Use a process.
Determine whether or not the vector field is conservative. If it is conservative, find a function...
Determine whether or not the vector field is conservative. If it is conservative, find a function f such that F = ∇f. (If the vector field is not conservative, enter DNE.) F(x, y, z) = 8xyi + (4x2 + 10yz)j + 5y2k Find: f(x, y, z) =
Find the potential function f for the field F=2x i+8y j+3z k.
Find the potential function f for the field F=2x i+8y j+3z k.
Determine whether or not F is a conservative vector field. If it is, find a function...
Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. (If the vector field is not conservative, enter DNE.) F(x, y) = (y2 − 8x)i + 2xyj
Determine whether or not F is a conservative vector field. If it is, find a function...
Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. (If the vector field is not conservative, enter DNE.) F(x, y) = (y2 − 8x)i + 2xyj
A) Consider the vector field F(x,y,z)=(9yz,−8xz,8xy). Find the divergence and curl of F. div(F)=∇⋅F= ? curl(F)=∇×F=(...
A) Consider the vector field F(x,y,z)=(9yz,−8xz,8xy). Find the divergence and curl of F. div(F)=∇⋅F= ? curl(F)=∇×F=( ? , ? , ?) B) Consider the vector field F(x,y,z)=(−4x2,0,3(x+y+z)2). Find the divergence and curl of F. div(F)=∇⋅F= ? curl(F)=∇×F=( ? , ? , ?).