Write the binomial expansion of (x-3y)^5
(x−3y)5(x-3y)5
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=n∑k=0nCk⋅(an−kbk)(a+b)n=∑k=0nnCk⋅(an-kbk).
5∑k=05!(5−k)!k!⋅(x)5−k⋅(−3y)k∑k=055!(5-k)!k!⋅(x)5-k⋅(-3y)k
Expand the summation.
5!(5−0)!0!(x)5−0⋅(−3y)0+5!(5−1)!1!(x)5−1⋅(−3y)+…+5!(5−5)!5!(x)5−5⋅(−3y)55!(5-0)!0!(x)5-0⋅(-3y)0+5!(5-1)!1!(x)5-1⋅(-3y)+…+5!(5-5)!5!(x)5-5⋅(-3y)5
Simplify the exponents for each term of the expansion.
1⋅(x)5⋅(−3y)0+5⋅(x)4⋅(−3y)+…+1⋅(x)0⋅(−3y)51⋅(x)5⋅(-3y)0+5⋅(x)4⋅(-3y)+…+1⋅(x)0⋅(-3y)5
x5−15x4y+90x3y2−270x2y3+405xy4−243y5
Get Answers For Free
Most questions answered within 1 hours.