Question

Let A be a matrix with m distinct, non-zero, eigenvalues. Prove that the eigenvectors of A...

Let A be a matrix with m distinct, non-zero, eigenvalues. Prove that the eigenvectors of A are linearly independent and span R^m. Note that this means (in this case) that the eigenvectors are distinct and form a base of the space.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. Let A = [-5 -5] [5 -5] a. Find the eigenvalues and eigenvectors for A....
4. Let A = [-5 -5] [5 -5] a. Find the eigenvalues and eigenvectors for A. b. Find an invertible matrix P and a matrix C of the form [a -b] such that A=PCP-1. [b a] c. For the transformation given by T(x) = Ax find the scaling factor and the angle of rotation.
Q‒5. [8+4+8 marks] Let Find the eigenvalues of A and the corresponding eigenvectors. Find a matrix...
Q‒5. [8+4+8 marks] Let Find the eigenvalues of A and the corresponding eigenvectors. Find a matrix P and a diagonal matrix D such thatD=P-1AP . Using the equationD=P-1AP , computeA27 .
Which of the following are NECESSARY CONDITIONS for an n x n matrix A to be...
Which of the following are NECESSARY CONDITIONS for an n x n matrix A to be diagonalizable? i) A has n distinct eigenvalues ii) A has n linearly independent eigenvectors iii) The algebraic multiplicity of each eigenvalue equals its geometric multiplicity iv) A is invertible v) The columns of A are linearly independent NOTE: The answer is more than 1 option.
Find an example of a nonzero, non-Invertible 2x2 matrix A and a linearly independent set {V,W}...
Find an example of a nonzero, non-Invertible 2x2 matrix A and a linearly independent set {V,W} of two, distinct non-zero vectors in R2 such that {AV,AW} are distinct, nonzero and linearly dependent. verify the matrix A in non-invertible, verify the set {V,W} is linearly independent and verify the set {AV,AW} is linearly dependent
Prove or disprove: If a real 5x5 matrix has a non-real eigenvalue, then it has 5...
Prove or disprove: If a real 5x5 matrix has a non-real eigenvalue, then it has 5 distinct eigenvalues.
Linear Algebra Conceptual Questions • If a subset of a vector space is NOT a subspace,...
Linear Algebra Conceptual Questions • If a subset of a vector space is NOT a subspace, what are the four things that could go wrong? How could you check to see which of these four properties aren’t true for the subset? • Is it possible for two distinct eigenvectors to correspond to the same eigenvalue? • Is it possible for two distinct eigenvalues to correspond to the same eigenvector? • What is the minimum number of vectors required take to...
Let A be a (n × n) matrix. Show that A and AT have the same...
Let A be a (n × n) matrix. Show that A and AT have the same characteristic polynomials (and therefore the same eigenvalues). Hint: For any (n×n) matrix B, we have det(BT) = det(B). Remark: Note that, however, it is generally not the case that A and AT have the same eigenvectors!
7) Let B be a matrix with a repeated zero eigenvalues. Then show that B2 =...
7) Let B be a matrix with a repeated zero eigenvalues. Then show that B2 = 0 (the 2 × 2 zero matrix). Use this to show: if A has a repeated eigenvalue λ0, then (A − λ0I) 2 = 0. (Hint: Use the fact that Bv = 0 for some nonzero vector v)
5. Suppose A is an n × n matrix, whose entries are all real numbers, that...
5. Suppose A is an n × n matrix, whose entries are all real numbers, that has n distinct real eigenvalues. Explain why R n has a basis consisting of eigenvectors of A. Hint: use the “eigenspaces are independent” lemma stated in class. 6. Unlike the previous problem, let A be a 2 × 2 matrix, whose entries are all real numbers, with only 1 eigenvalue λ. (Note: λ must be real, but don’t worry about why this is true)....
Let B be an mxn matrix. Prove c is a non-zero scalar, then dim(rowspace(cB)) = dim(rowspace(B)).
Let B be an mxn matrix. Prove c is a non-zero scalar, then dim(rowspace(cB)) = dim(rowspace(B)).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT