prove that c(uxv) = cuxcv
There seems to be mistake here. We have c(uxv) = cu x v = u x cv and not cu x cv.
Let u = a1i + a2j + a3k, and v = b1i + b2j + b3k
Then uxv =
i |
j |
k |
a1 |
a2 |
a3 |
b1 |
b2 |
b3 |
= i(a2 b3-a3 b2) - j(a1b3-a3*b1) + k(a1b2-a2b1)
so that c(uxv) = c[i(a2 b3-a3 b2) - j(a1b3-a3b1) + k(a1b2-a2b1)]
Also cu x v =
i |
j |
k |
ca1 |
ca2 |
ca3 |
b1 |
b2 |
b3 |
= i(ca2b3-ca3 b2) - j(ca1b3-ca3b1) + k(ca1b2-ca2b1) = c[i(a2 b3-a3 b2) - j(a1b3-a3b1) + k(a1b2-a2b1)] = c(u x v).
Also, u x cv =
i |
j |
k |
a1 |
a2 |
a3 |
cb1 |
cb2 |
cb3 |
= i(ca2b3-ca3 b2) - j(ca1b3-ca3b1) + k(ca1b2-ca2b1) = c[i(a2 b3-a3 b2) - j(a1b3-a3b1) + k(a1b2-a2b1)] = c(u x v).
Get Answers For Free
Most questions answered within 1 hours.