Question

Suppose the derivative of f exists, and assume that f(1) = 4, and f'(1) = 5....

Suppose the derivative of f exists, and assume that f(1) = 4, and f'(1) = 5. Let g(x) = x^2f(x), and h(x) = f(x)/x-2

a) g' (1) = ??

find the equation of the tangent line to g(x) at x = 1

y = ??

b) h'(1) = ??

Find the equation of the tangent line to h(x) at x = 1

y = ??

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that f(2) = −4, g(2) = 2, f '(2) = −5, and g'(2) = 1....
Suppose that f(2) = −4, g(2) = 2, f '(2) = −5, and g'(2) = 1. Find h'(2). a. h(x)=2f(x)-5g(x) h'(2)=? b. h(x)=f(x)g(x) h'(2)=? c. h(x)=f(x)/g(x) h'(2)=? d. h(x)=g(x)/1+f(x) h'(2)=?
Let f(x)=3x2+10x+3. a) Find the derivative of f(x) using the definition of the derivative. (8 marks)...
Let f(x)=3x2+10x+3. a) Find the derivative of f(x) using the definition of the derivative. b) Find the equation of the tangent line at point x=−1
Use the limit definition of the derivative of function x=a, f'(a) to find an equation of...
Use the limit definition of the derivative of function x=a, f'(a) to find an equation of the tangent line to the curve y-f(x)-sqrt(x+2) at x-1. That is,first you find f'(1) and then find the equation of the tangent line.
Consider the function and the value of a. f(x) = -5/x-1, a=7 (a) Use mtan =...
Consider the function and the value of a. f(x) = -5/x-1, a=7 (a) Use mtan = lim h→0 , f(a + h) − f(a) h to find the slope of the tangent line mtan = f '(a). mtan = (b) Find the equation of the tangent line to f at x = a. (Let x be the independent variable and y be the dependent variable.)
Suppose f(x) = (2/x) + 5 . a. *Graph this function. b. *Find the equation of...
Suppose f(x) = (2/x) + 5 . a. *Graph this function. b. *Find the equation of the secant line to f(x) on the interval [1, 3]. Call this line g(x). Add g(x) to your graph c. Find the equation of the tangent line to f(x) at the point (2,6). Call this line h(x). Add h(x) to your graph. Please neatly show your work.
Consider f(x) = x2 – 8x. Find its derivative using the limit definition of the derivative....
Consider f(x) = x2 – 8x. Find its derivative using the limit definition of the derivative. Simplify all steps.     a. Find f(x + h).   ____________     b. Find f(x + h) – f(x).   ____________     c. Find [f(x + h) – f(x)] ÷ h.   ____________   d. Find lim (hà0) [f(x + h) – f(x)] ÷ h.   ____________     e. Find an equation of the line tangent to the graph of y = x2 – 8x where x = -3. Present your answer...
Suppose that f(x) = (2x)/((4-2x)^3) Find an equation for the tangent line to the graph of...
Suppose that f(x) = (2x)/((4-2x)^3) Find an equation for the tangent line to the graph of f at x=1. Tangent line: y =
1. Let f(x)=−x^2+13x+4 a.Find the derivative f '(x) b. Find f '(−3) 2. Let f(x)=2x^2−4x+7/5x^2+5x−9, evaluate...
1. Let f(x)=−x^2+13x+4 a.Find the derivative f '(x) b. Find f '(−3) 2. Let f(x)=2x^2−4x+7/5x^2+5x−9, evaluate f '(x) at x=3 rounded to 2 decimal places. f '(3)= 3. Let f(x)=(x^3+4x+2)(160−5x) find f ′(x). f '(x)= 4. Find the derivative of the function f(x)=√x−5/x^4 f '(x)= 5. Find the derivative of the function f(x)=2x−5/3x−3 f '(x)= 6. Find the derivative of the function g(x)=(x^4−5x^2+5x+4)(x^3−4x^2−1). You do not have to simplify your answer. g '(x)= 7. Let f(x)=(−x^2+x+3)^5 a. Find the derivative....
f(x) =x2 -x use f'(x)=lim h->0 f(x+h) - f(x)/h find: 1. f '(x) 2. f '(2)...
f(x) =x2 -x use f'(x)=lim h->0 f(x+h) - f(x)/h find: 1. f '(x) 2. f '(2) 3. Find the equation of a tangent line to the given function at x=2 4. f ' (-3) 5. Find the equation of a tangent line to the given function at x=-3
[2 marks] Find the derivative of y  =  √ 4 sin x + 6 at x  ...
[2 marks] Find the derivative of y  =  √ 4 sin x + 6 at x  =  0. Consider the following statements. The limit lim x→0 g(4 + h) − g(4) h is equivalent to: (i) The derivative of g(x) at x  =  h (ii) The derivative of g(x + 4) at x  =  0 (iii) The derivative of g(−x) at x  =  −4 Determine which of the above statements are True (1) or False (2). If  f (3)  = ...