Question

A contour map is shown for a function f on the square R = [0, 2]...

A contour map is shown for a function f on the square R = [0, 2] ⨯ [0, 2].

(a) Use the Midpoint Rule with m = n = 2 to estimate the value of

f(x,y) dA.
R

(Round your answer to the nearest integer.)


(b) Estimate the average value of f. (Round your answer to one decimal place.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Draw a contour map of the function f(x, y) = y/(2x 2 + y 2 )...
Draw a contour map of the function f(x, y) = y/(2x 2 + y 2 ) showing several level curves.
Draw a contour map for the surface f(x,y)=16-x^2-y^2 using the contour lines C= 0, 4,7 and...
Draw a contour map for the surface f(x,y)=16-x^2-y^2 using the contour lines C= 0, 4,7 and 16
A table of values is given for a function f(x, y) defined on R = [1,...
A table of values is given for a function f(x, y) defined on R = [1, 3] × [0, 4]. 0 1 2 3 4 1.0 2 0 -3 -6 -5 1.5 3 1 -4 -5 -6 2.0 4 3 0 -5 -8 2.5 5 4 3 -1 -4 3.0 7 8 6 3 0 Estimate f(x, y) dA R using the Midpoint Rule with m = n = 2 and estimate the double integral with m = n =...
make a contour map with x=0, y=0, z=0, z=1, z=2, and z=4 for z=x^2+y^2 then sketch...
make a contour map with x=0, y=0, z=0, z=1, z=2, and z=4 for z=x^2+y^2 then sketch the graph
Question 4: The function f : {0,1,2,...} → R is defined byf(0) = 7, f(n) =...
Question 4: The function f : {0,1,2,...} → R is defined byf(0) = 7, f(n) = 5·f(n−1)+12n2 −30n+15 ifn≥1.• Prove that for every integer n ≥ 0, f(n)=7·5n −3n2. Question 5: Consider the following recursive algorithm, which takes as input an integer n ≥ 1 that is a power of two: Algorithm Mystery(n): if n = 1 then return 1 else x = Mystery(n/2); return n + xendif • Determine the output of algorithm Mystery(n) as a function of n....
sketch a contour diagram for the function f(x,y)=x-y^2 with at least four labeled contours
sketch a contour diagram for the function f(x,y)=x-y^2 with at least four labeled contours
A function f”R n × R m → R is bilinear if for all x, y...
A function f”R n × R m → R is bilinear if for all x, y ∈ R n and all w, z ∈ R m, and all a ∈ R: • f(x + ay, z) = f(x, z) + af(y, z) • f(x, w + az) = f(x, w) + af(x, z) (a) Prove that if f is bilinear, then (0.1) lim (h,k)→(0,0) |f(h, k)| |(h, k)| = 0. (b) Prove that Df(a, b) · (h, k) = f(a,...
1. For n exists in R, we define the function f by f(x)=x^n, x exists in...
1. For n exists in R, we define the function f by f(x)=x^n, x exists in (0,1), and f(x):=0 otherwise. For what value of n is f integrable? 2. For m exists in R, we define the function g by g(x)=x^m, x exists in (1,infinite), and g(x):=0 otherwise. For what value of m is g integrable?
Consider the function f defined on R by f(x) = ?0 if x ≤ 0, f(x)...
Consider the function f defined on R by f(x) = ?0 if x ≤ 0, f(x) = e^(−1/x^2) if x > 0. Prove that f is indefinitely differentiable on R, and that f(n)(0) = 0 for all n ≥ 1. Conclude that f does not have a converging power series expansion En=0 to ∞[an*x^n] for x near the origin. [Note: This problem illustrates an enormous difference between the notions of real-differentiability and complex-differentiability.]
Consider the function f : R 2 → R defined by f(x, y) = 4 +...
Consider the function f : R 2 → R defined by f(x, y) = 4 + x 3 + y 3 − 3xy. (a)Compute the directional derivative of f at the point (a, b) = ( 1 2 , 1 2 ), in the direction u = ( √ 1 2 , − √ 1 2 ). At the point ( 1 2 , 1 2 ), is u the direction of steepest ascent, steepest descent, or neither? Justify your...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT