Question

Consider the function f(x,y)= (x+2*y)*e^(x-2y) for all real values (x,y). Determine the linearization to f at...

Consider the function f(x,y)= (x+2*y)*e^(x-2y) for all real values (x,y).

Determine the linearization to f at the point (2,1)

Use the linearization to approximate f(2.1,1.1)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For f(x,y)=ln(x^2−y+3). -> Find the domain and the range of the function z=f(x,y). -> Sketch the...
For f(x,y)=ln(x^2−y+3). -> Find the domain and the range of the function z=f(x,y). -> Sketch the domain, then separately sketch three distinct level curves. -> Find the linearization of f(x,y) at the point (x,y)=(4,18). -> Use this linearization to determine the approximate value of the function at the point (3.7,17.7).
Consider the function f(x,y)=y+sin(x/y) a) Find the equation of the tangent plane to the graph offat...
Consider the function f(x,y)=y+sin(x/y) a) Find the equation of the tangent plane to the graph offat the point(1,3) b) Find the linearization of the function f at the point(1;3)and use it to approximate f(0:9;3:1). c) Explain why f is differentiable at the point(1;3) d)Find the differential of f e) If (x,y) changes from (1,3) to (0.9,3.1), compare the values of ‘change in f’ and df
Let f(x,y) = sqrt(22−2x^2−y^2). Find the linearization of the function f at (1,2) and use it...
Let f(x,y) = sqrt(22−2x^2−y^2). Find the linearization of the function f at (1,2) and use it to approximate f(1.1,2.1).
6. (5 marks) Consider the function f defined by f (x, y) = ln(x − y)....
6. Consider the function f defined by f (x, y) = ln(x − y). (a) Determine the natural domain of f. (b) Sketch the level curves of f for the values k = −2, 0, 2. (c) Find the gradient of f at the point (2,1), that is ∇f(2,1). (d) In which unit vector direction, at the point (2,1), is the directional derivative of f the smallest and what is the directional derivative in that direction?
Find the linearization of the function f(x,y) = √xy at the point P(1,1) to approximate f(4/5,...
Find the linearization of the function f(x,y) = √xy at the point P(1,1) to approximate f(4/5, 11/10).
Find the linearization of the function f (x y) = arctan (y / x) at point...
Find the linearization of the function f (x y) = arctan (y / x) at point (1,1) and the tangent plane at that point.
Determine the absolute maximum and minimum values of the function f(x)= e^-x^2 over the interval [-2,1]
Determine the absolute maximum and minimum values of the function f(x)= e^-x^2 over the interval [-2,1]
Determine the absolute maximum and minimum values of the function f(x)= e^-x^2 over the interval [-2,1].
Determine the absolute maximum and minimum values of the function f(x)= e^-x^2 over the interval [-2,1].
Find the linearization of the function f(x,y)=√(22−1x2−3y2 )at the point (-1, 2). L(x,y)=_______ Use the linear...
Find the linearization of the function f(x,y)=√(22−1x2−3y2 )at the point (-1, 2). L(x,y)=_______ Use the linear approximation to estimate the value of f(−1.1,2.1)=_________
consider the 2 variable function f(x,y) = 4 - x^2 - y^2 - 2x - 2y...
consider the 2 variable function f(x,y) = 4 - x^2 - y^2 - 2x - 2y + xy a.) find the x,y location of all critical points of f(x,y) b.) classify each of the critical points found in part a.)