Question

Let n be a positive integer. Denote by En the vector field − r /(||r||^n) where...

Let n be a positive integer. Denote by En the vector field − r /(||r||^n)
where r = (x,y,z).

(1) Show that for n ≥ 3, En is conservative.
(2) Compute ∇·En.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let n be a positive integer and p and r two real numbers in the interval...
Let n be a positive integer and p and r two real numbers in the interval (0,1). Two random variables X and Y are defined on a the same sample space. All we know about them is that X∼Geom(p) and Y∼Bin(n,r). (In particular, we do not know whether X and Y are independent.) For each expectation below, decide whether it can be calculated with this information, and if it can, give its value (in terms of p, n, and r)....
Consider the inward fluxRRS(F·n)dS of the vector field F = y2i + xz3j + z2k where...
Consider the inward fluxRRS(F·n)dS of the vector field F = y2i + xz3j + z2k where S is the surface of the region D bounded by the cylinder x2 + y2 = 16 and the planes z = 1, z = 5, x = √3y, y = 0, x,y ≥ 0. a. [2] Compute the divergence of the vector field F at the point (1,1,−1). b. [7] Transform the surface integral into the triple integral using the divergence theorem and...
Consider the following line integral of the conservative vector field: ZC(y2 sinz−z)dx + 2xy sinz dy...
Consider the following line integral of the conservative vector field: ZC(y2 sinz−z)dx + 2xy sinz dy + (xy2 cosz−x)dz where C is the contour given by r(t) = ht3,2t2 −1,πti, 0 ≤ t ≤ 1/2. a. [4] Find the potential f of the vector field satisfying the condition f(1,1,0) = 0. b. [5] Compute the line integral.
Let n be a positive integer, and let Hn denote the graph whose vertex set is...
Let n be a positive integer, and let Hn denote the graph whose vertex set is the set of all n-tuples with coordinates in {0, 1}, such that vertices u and v are adjacent if and only if they differ in one position. For example, if n = 3, then (0, 0, 1) and (0, 1, 1) are adjacent, but (0, 0, 0) and (0, 1, 1) are not. Answer the following with brief justification (formal proofs not necessary): a....
the electrostatic force vector F for a system of unit charges is defined by vector F=(x^2+y^2+z^2)^n...
the electrostatic force vector F for a system of unit charges is defined by vector F=(x^2+y^2+z^2)^n (xi+yj+zk). where is an integer. Find (a) div vector F, (b) a scalar potential psi such that F =-delta psi. Leave your answer in terms of vector |r| where vector r=(xi+yj+zk). the electrostatic force vector F for a system of unit charges is defined by vector F=(x^2+y^2+z^2)^n (xi+yj+zk). where is n an integer. Find (a) div vector F, (b) a scalar potential psi such...
Euler's Totient Function Let f(n) denote Euler's totient function; thus, for a positive integer n, f(n)...
Euler's Totient Function Let f(n) denote Euler's totient function; thus, for a positive integer n, f(n) is the number of integers less than n which are coprime to n. For a prime p its is known that f(p^k) = p^k-p^{k-1}. For example f(27) = f(3^3) = 3^3 - 3^2 = (3^2) 2=18. In addition, it is known that f(n) is multiplicative in the sense that f(ab) = f(a)f(b) whenever a and b are coprime. Lastly, one has the celebrated generalization...
2. Suppose that F(x,y) is a conservative vector field with potential function f(x,y). Suppose that every...
2. Suppose that F(x,y) is a conservative vector field with potential function f(x,y). Suppose that every vector in F is horizontal (ie: has y component 0). What can you deduce about f?
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n...
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n and dim(W) = m, and let φ : V → W be a linear transformation. Fill in the six blanks to give bounds on the sizes of the dimension of ker(φ) and the dimension of im(φ). 3. Let V and W be finite-dimensional vector spaces over field F with dim(V ) = n and dim(W) = m, and let φ : V → W...
1. [10] Let ~x ∈ R n with ~x 6= ~0. For each ~y ∈ R...
1. [10] Let ~x ∈ R n with ~x 6= ~0. For each ~y ∈ R n , recall that perp~x(~y) = ~y − proj~x(~y). (a) Show that perp~x(~y + ~z) = perp~x(~y) + perp~x(~z) for all ~y, ~z ∈ R n . (b) Show that perp~x(t~y) = tperp~x(~y) for all ~y ∈ R n and t ∈ R. (c) Show that perp~x(perp~x(~y)) = perp~x(~y) for all ~y ∈ R n
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉...
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉 ∈ R for x, y ∈ V . (a) (3points) Let λ∈R with λ>0. Show that 〈x,y〉′ = λ〈x,y〉, for x,y ∈ V, (b) (2 points) Let T : V → V be a linear operator, such that 〈T(x),T(y)〉 = 〈x,y〉, for all x,y ∈ V. Show that T is one-to-one. (c) (2 points) Recall that the norm of a vector x ∈ V...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT